Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj154 Unicode version

Theorem bnj154 28588
Description: Technical lemma for bnj153 28590. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj154.1  |-  ( ph1  <->  [. g  /  f ]. ph' )
bnj154.2  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
Assertion
Ref Expression
bnj154  |-  ( ph1  <->  (
g `  (/) )  = 
pred ( x ,  A ,  R ) )
Distinct variable groups:    A, f    R, f    f, g    x, f
Allowed substitution hints:    A( x, g)    R( x, g)    ph'( x, f, g)    ph1( x, f, g)

Proof of Theorem bnj154
StepHypRef Expression
1 bnj154.1 . 2  |-  ( ph1  <->  [. g  /  f ]. ph' )
2 bnj154.2 . . 3  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
32sbcbii 3160 . 2  |-  ( [. g  /  f ]. ph'  <->  [. g  / 
f ]. ( f `  (/) )  =  pred (
x ,  A ,  R ) )
4 vex 2903 . . 3  |-  g  e. 
_V
5 fveq1 5668 . . . 4  |-  ( f  =  g  ->  (
f `  (/) )  =  ( g `  (/) ) )
65eqeq1d 2396 . . 3  |-  ( f  =  g  ->  (
( f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( g `  (/) )  = 
pred ( x ,  A ,  R ) ) )
74, 6sbcie 3139 . 2  |-  ( [. g  /  f ]. (
f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( g `  (/) )  = 
pred ( x ,  A ,  R ) )
81, 3, 73bitri 263 1  |-  ( ph1  <->  (
g `  (/) )  = 
pred ( x ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1649   [.wsbc 3105   (/)c0 3572   ` cfv 5395    predc-bnj14 28391
This theorem is referenced by:  bnj153  28590  bnj580  28623  bnj607  28626
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-rex 2656  df-v 2902  df-sbc 3106  df-uni 3959  df-br 4155  df-iota 5359  df-fv 5403
  Copyright terms: Public domain W3C validator