Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj155 Unicode version

Theorem bnj155 28911
Description: Technical lemma for bnj153 28912. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj155.1  |-  ( ps1  <->  [. g  /  f ]. ps' )
bnj155.2  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj155  |-  ( ps1  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )
Distinct variable groups:    A, f    R, f    f, g, i, y
Allowed substitution hints:    A( y, g, i)    R( y, g, i)    ps'( y, f, g, i)    ps1( y, f, g, i)

Proof of Theorem bnj155
StepHypRef Expression
1 bnj155.1 . 2  |-  ( ps1  <->  [. g  /  f ]. ps' )
2 bnj155.2 . . 3  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
32sbcbii 3046 . 2  |-  ( [. g  /  f ]. ps'  <->  [. g  / 
f ]. A. i  e. 
om  ( suc  i  e.  1o  ->  ( f `  suc  i )  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
4 vex 2791 . . 3  |-  g  e. 
_V
5 fveq1 5524 . . . . . 6  |-  ( f  =  g  ->  (
f `  suc  i )  =  ( g `  suc  i ) )
6 fveq1 5524 . . . . . . 7  |-  ( f  =  g  ->  (
f `  i )  =  ( g `  i ) )
76bnj1113 28817 . . . . . 6  |-  ( f  =  g  ->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) )
85, 7eqeq12d 2297 . . . . 5  |-  ( f  =  g  ->  (
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  <->  ( g `  suc  i )  = 
U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
98imbi2d 307 . . . 4  |-  ( f  =  g  ->  (
( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  ( suc  i  e.  1o  ->  ( g `  suc  i
)  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) ) ) )
109ralbidv 2563 . . 3  |-  ( f  =  g  ->  ( A. i  e.  om  ( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( g `  suc  i )  = 
U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) ) )
114, 10sbcie 3025 . 2  |-  ( [. g  /  f ]. A. i  e.  om  ( suc  i  e.  1o  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( g `  suc  i )  = 
U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
121, 3, 113bitri 262 1  |-  ( ps1  <->  A. i  e.  om  ( suc  i  e.  1o  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   A.wral 2543   [.wsbc 2991   U_ciun 3905   suc csuc 4394   omcom 4656   ` cfv 5255   1oc1o 6472    predc-bnj14 28713
This theorem is referenced by:  bnj153  28912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790  df-sbc 2992  df-in 3159  df-ss 3166  df-uni 3828  df-iun 3907  df-br 4024  df-iota 5219  df-fv 5263
  Copyright terms: Public domain W3C validator