Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj155 Structured version   Unicode version

Theorem bnj155 29250
 Description: Technical lemma for bnj153 29251. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj155.1
bnj155.2
Assertion
Ref Expression
bnj155
Distinct variable groups:   ,   ,   ,,,
Allowed substitution hints:   (,,)   (,,)   (,,,)   (,,,)

Proof of Theorem bnj155
StepHypRef Expression
1 bnj155.1 . 2
2 bnj155.2 . . 3
32sbcbii 3216 . 2
4 vex 2959 . . 3
5 fveq1 5727 . . . . . 6
6 fveq1 5727 . . . . . . 7
76iuneq1d 4116 . . . . . 6
85, 7eqeq12d 2450 . . . . 5
98imbi2d 308 . . . 4
109ralbidv 2725 . . 3
114, 10sbcie 3195 . 2
121, 3, 113bitri 263 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wcel 1725  wral 2705  wsbc 3161  ciun 4093   csuc 4583  com 4845  cfv 5454  c1o 6717   c-bnj14 29052 This theorem is referenced by:  bnj153  29251 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-v 2958  df-sbc 3162  df-in 3327  df-ss 3334  df-uni 4016  df-iun 4095  df-br 4213  df-iota 5418  df-fv 5462
 Copyright terms: Public domain W3C validator