Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj168 Unicode version

Theorem bnj168 29074
Description: First-order logic and set theory. Revised to remove dependence on ax-reg 7322. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by NM, 21-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj168.1  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj168  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  D  n  =  suc  m )
Distinct variable group:    m, n
Allowed substitution hints:    D( m, n)

Proof of Theorem bnj168
StepHypRef Expression
1 bnj168.1 . . . . . . . . . 10  |-  D  =  ( om  \  { (/)
} )
21bnj158 29073 . . . . . . . . 9  |-  ( n  e.  D  ->  E. m  e.  om  n  =  suc  m )
32anim2i 552 . . . . . . . 8  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  ( n  =/=  1o  /\ 
E. m  e.  om  n  =  suc  m ) )
4 r19.42v 2707 . . . . . . . 8  |-  ( E. m  e.  om  (
n  =/=  1o  /\  n  =  suc  m )  <-> 
( n  =/=  1o  /\ 
E. m  e.  om  n  =  suc  m ) )
53, 4sylibr 203 . . . . . . 7  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( n  =/=  1o  /\  n  =  suc  m
) )
6 neeq1 2467 . . . . . . . . . . 11  |-  ( n  =  suc  m  -> 
( n  =/=  1o  <->  suc  m  =/=  1o ) )
76biimpac 472 . . . . . . . . . 10  |-  ( ( n  =/=  1o  /\  n  =  suc  m )  ->  suc  m  =/=  1o )
8 df-1o 6495 . . . . . . . . . . . . 13  |-  1o  =  suc  (/)
98eqeq2i 2306 . . . . . . . . . . . 12  |-  ( suc  m  =  1o  <->  suc  m  =  suc  (/) )
10 nnon 4678 . . . . . . . . . . . . 13  |-  ( m  e.  om  ->  m  e.  On )
11 0elon 4461 . . . . . . . . . . . . 13  |-  (/)  e.  On
12 suc11 4512 . . . . . . . . . . . . 13  |-  ( ( m  e.  On  /\  (/) 
e.  On )  -> 
( suc  m  =  suc  (/)  <->  m  =  (/) ) )
1310, 11, 12sylancl 643 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  ( suc  m  =  suc  (/)  <->  m  =  (/) ) )
149, 13syl5rbb 249 . . . . . . . . . . 11  |-  ( m  e.  om  ->  (
m  =  (/)  <->  suc  m  =  1o ) )
1514necon3bid 2494 . . . . . . . . . 10  |-  ( m  e.  om  ->  (
m  =/=  (/)  <->  suc  m  =/= 
1o ) )
167, 15syl5ibr 212 . . . . . . . . 9  |-  ( m  e.  om  ->  (
( n  =/=  1o  /\  n  =  suc  m
)  ->  m  =/=  (/) ) )
1716ancld 536 . . . . . . . 8  |-  ( m  e.  om  ->  (
( n  =/=  1o  /\  n  =  suc  m
)  ->  ( (
n  =/=  1o  /\  n  =  suc  m )  /\  m  =/=  (/) ) ) )
1817reximia 2661 . . . . . . 7  |-  ( E. m  e.  om  (
n  =/=  1o  /\  n  =  suc  m )  ->  E. m  e.  om  ( ( n  =/= 
1o  /\  n  =  suc  m )  /\  m  =/=  (/) ) )
195, 18syl 15 . . . . . 6  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( ( n  =/= 
1o  /\  n  =  suc  m )  /\  m  =/=  (/) ) )
20 anass 630 . . . . . . 7  |-  ( ( ( n  =/=  1o  /\  n  =  suc  m
)  /\  m  =/=  (/) )  <->  ( n  =/= 
1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
2120rexbii 2581 . . . . . 6  |-  ( E. m  e.  om  (
( n  =/=  1o  /\  n  =  suc  m
)  /\  m  =/=  (/) )  <->  E. m  e.  om  ( n  =/=  1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
2219, 21sylib 188 . . . . 5  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( n  =/=  1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
23 simpr 447 . . . . 5  |-  ( ( n  =/=  1o  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  ( n  =  suc  m  /\  m  =/=  (/) ) )
2422, 23bnj31 29061 . . . 4  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  om  ( n  =  suc  m  /\  m  =/=  (/) ) )
25 df-rex 2562 . . . 4  |-  ( E. m  e.  om  (
n  =  suc  m  /\  m  =/=  (/) )  <->  E. m
( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) ) )
2624, 25sylib 188 . . 3  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m ( m  e.  om  /\  (
n  =  suc  m  /\  m  =/=  (/) ) ) )
27 simpr 447 . . . . . . 7  |-  ( ( n  =  suc  m  /\  m  =/=  (/) )  ->  m  =/=  (/) )
2827anim2i 552 . . . . . 6  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  ( m  e. 
om  /\  m  =/=  (/) ) )
291eleq2i 2360 . . . . . . 7  |-  ( m  e.  D  <->  m  e.  ( om  \  { (/) } ) )
30 eldifsn 3762 . . . . . . 7  |-  ( m  e.  ( om  \  { (/)
} )  <->  ( m  e.  om  /\  m  =/=  (/) ) )
3129, 30bitr2i 241 . . . . . 6  |-  ( ( m  e.  om  /\  m  =/=  (/) )  <->  m  e.  D )
3228, 31sylib 188 . . . . 5  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  m  e.  D
)
33 simprl 732 . . . . 5  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  n  =  suc  m )
3432, 33jca 518 . . . 4  |-  ( ( m  e.  om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  ( m  e.  D  /\  n  =  suc  m ) )
3534eximi 1566 . . 3  |-  ( E. m ( m  e. 
om  /\  ( n  =  suc  m  /\  m  =/=  (/) ) )  ->  E. m ( m  e.  D  /\  n  =  suc  m ) )
3626, 35syl 15 . 2  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m ( m  e.  D  /\  n  =  suc  m ) )
37 df-rex 2562 . 2  |-  ( E. m  e.  D  n  =  suc  m  <->  E. m
( m  e.  D  /\  n  =  suc  m ) )
3836, 37sylibr 203 1  |-  ( ( n  =/=  1o  /\  n  e.  D )  ->  E. m  e.  D  n  =  suc  m )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557    \ cdif 3162   (/)c0 3468   {csn 3653   Oncon0 4408   suc csuc 4410   omcom 4672   1oc1o 6488
This theorem is referenced by:  bnj600  29267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-1o 6495
  Copyright terms: Public domain W3C validator