Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj206 Structured version   Unicode version

Theorem bnj206 29098
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj206.1
bnj206.2
bnj206.3
bnj206.4
Assertion
Ref Expression
bnj206

Proof of Theorem bnj206
StepHypRef Expression
1 bnj206.4 . 2
2 sbc3ang 3219 . . 3
3 bnj206.1 . . . . 5
43bicomi 194 . . . 4
5 bnj206.2 . . . . 5
65bicomi 194 . . . 4
7 bnj206.3 . . . . 5
87bicomi 194 . . . 4
94, 6, 83anbi123i 1142 . . 3
102, 9syl6bb 253 . 2
111, 10ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wb 177   w3a 936   wcel 1725  cvv 2956  wsbc 3161 This theorem is referenced by:  bnj124  29242  bnj207  29252 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-sbc 3162
 Copyright terms: Public domain W3C validator