Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj213 Structured version   Unicode version

Theorem bnj213 29315
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj213

Proof of Theorem bnj213
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-bnj14 29115 . 2
21bnj21 29144 1
 Colors of variables: wff set class Syntax hints:   wss 3322   class class class wbr 4214   c-bnj14 29114 This theorem is referenced by:  bnj229  29317  bnj517  29318  bnj1128  29421  bnj1145  29424  bnj1137  29426  bnj1408  29467  bnj1417  29472  bnj1523  29502 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rab 2716  df-in 3329  df-ss 3336  df-bnj14 29115
 Copyright terms: Public domain W3C validator