Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj226 Unicode version

Theorem bnj226 28762
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj226.1  |-  B  C_  C
Assertion
Ref Expression
bnj226  |-  U_ x  e.  A  B  C_  C
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem bnj226
StepHypRef Expression
1 bnj226.1 . . 3  |-  B  C_  C
21rgenw 2610 . 2  |-  A. x  e.  A  B  C_  C
3 iunss 3943 . 2  |-  ( U_ x  e.  A  B  C_  C  <->  A. x  e.  A  B  C_  C )
42, 3mpbir 200 1  |-  U_ x  e.  A  B  C_  C
Colors of variables: wff set class
Syntax hints:   A.wral 2543    C_ wss 3152   U_ciun 3905
This theorem is referenced by:  bnj229  28916  bnj1128  29020  bnj1145  29023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790  df-in 3159  df-ss 3166  df-iun 3907
  Copyright terms: Public domain W3C validator