Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj228 Structured version   Unicode version

Theorem bnj228 29200
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj228.1  |-  ( ph  <->  A. x  e.  A  ps )
Assertion
Ref Expression
bnj228  |-  ( ( x  e.  A  /\  ph )  ->  ps )

Proof of Theorem bnj228
StepHypRef Expression
1 bnj228.1 . . 3  |-  ( ph  <->  A. x  e.  A  ps )
2 rsp 2772 . . 3  |-  ( A. x  e.  A  ps  ->  ( x  e.  A  ->  ps ) )
31, 2sylbi 189 . 2  |-  ( ph  ->  ( x  e.  A  ->  ps ) )
43impcom 421 1  |-  ( ( x  e.  A  /\  ph )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1727   A.wral 2711
This theorem is referenced by:  bnj229  29353  bnj999  29426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-11 1763
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-ral 2716
  Copyright terms: Public domain W3C validator