Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj256 Unicode version

Theorem bnj256 28780
Description:  /\-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj256  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ( ph  /\  ps )  /\  ( ch  /\  th )
) )

Proof of Theorem bnj256
StepHypRef Expression
1 bnj248 28774 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( (
( ph  /\  ps )  /\  ch )  /\  th ) )
2 anass 631 . 2  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  <->  ( ( ph  /\  ps )  /\  ( ch  /\  th )
) )
31, 2bitri 241 1  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ( ph  /\  ps )  /\  ( ch  /\  th )
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w-bnj17 28760
This theorem is referenced by:  bnj257  28781  bnj432  28790  bnj543  28974  bnj546  28977  bnj557  28982  bnj916  29014  bnj969  29027  bnj1090  29058  bnj1118  29063  bnj1174  29082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-bnj17 28761
  Copyright terms: Public domain W3C validator