Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj256 Unicode version

Theorem bnj256 28731
Description:  /\-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj256  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ( ph  /\  ps )  /\  ( ch  /\  th )
) )

Proof of Theorem bnj256
StepHypRef Expression
1 bnj248 28725 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( (
( ph  /\  ps )  /\  ch )  /\  th ) )
2 anass 630 . 2  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  <->  ( ( ph  /\  ps )  /\  ( ch  /\  th )
) )
31, 2bitri 240 1  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ( ph  /\  ps )  /\  ( ch  /\  th )
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w-bnj17 28711
This theorem is referenced by:  bnj257  28732  bnj432  28741  bnj543  28925  bnj546  28928  bnj557  28933  bnj916  28965  bnj969  28978  bnj1090  29009  bnj1118  29014  bnj1174  29033
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-bnj17 28712
  Copyright terms: Public domain W3C validator