Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj257 Unicode version

Theorem bnj257 29048
Description:  /\-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj257  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ph  /\ 
ps  /\  th  /\  ch ) )

Proof of Theorem bnj257
StepHypRef Expression
1 ancom 437 . . 3  |-  ( ( ch  /\  th )  <->  ( th  /\  ch )
)
21anbi2i 675 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ( ph  /\  ps )  /\  ( th  /\  ch )
) )
3 bnj256 29047 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ( ph  /\  ps )  /\  ( ch  /\  th )
) )
4 bnj256 29047 . 2  |-  ( (
ph  /\  ps  /\  th  /\  ch )  <->  ( ( ph  /\  ps )  /\  ( th  /\  ch )
) )
52, 3, 43bitr4i 268 1  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ph  /\ 
ps  /\  th  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w-bnj17 29027
This theorem is referenced by:  bnj258  29049  bnj334  29054  bnj543  29241  bnj929  29284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-bnj17 29028
  Copyright terms: Public domain W3C validator