Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj268 Unicode version

Theorem bnj268 29050
Description:  /\-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj268  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ph  /\ 
ch  /\  ps  /\  th ) )

Proof of Theorem bnj268
StepHypRef Expression
1 3ancomb 943 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ch  /\ 
ps ) )
21anbi1i 676 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th ) 
<->  ( ( ph  /\  ch  /\  ps )  /\  th ) )
3 df-bnj17 29028 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ( ph  /\  ps  /\  ch )  /\  th ) )
4 df-bnj17 29028 . 2  |-  ( (
ph  /\  ch  /\  ps  /\ 
th )  <->  ( ( ph  /\  ch  /\  ps )  /\  th ) )
52, 3, 43bitr4i 268 1  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ph  /\ 
ch  /\  ps  /\  th ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    /\ w-bnj17 29027
This theorem is referenced by:  bnj543  29241  bnj929  29284  bnj1110  29328
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-bnj17 29028
  Copyright terms: Public domain W3C validator