Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj290 Unicode version

Theorem bnj290 28735
Description:  /\-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj290  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ph  /\ 
ch  /\  th  /\  ps ) )

Proof of Theorem bnj290
StepHypRef Expression
1 3anrot 939 . . 3  |-  ( ( ps  /\  ch  /\  th )  <->  ( ch  /\  th 
/\  ps ) )
21anbi2i 675 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  <->  ( ph  /\  ( ch  /\  th  /\  ps ) ) )
3 bnj252 28728 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ph  /\  ( ps  /\  ch  /\ 
th ) ) )
4 bnj252 28728 . 2  |-  ( (
ph  /\  ch  /\  th  /\  ps )  <->  ( ph  /\  ( ch  /\  th  /\  ps ) ) )
52, 3, 43bitr4i 268 1  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ph  /\ 
ch  /\  th  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    /\ w-bnj17 28711
This theorem is referenced by:  bnj291  28736  bnj334  28738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-bnj17 28712
  Copyright terms: Public domain W3C validator