Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj31 Unicode version

Theorem bnj31 28802
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj31.1  |-  ( ph  ->  E. x  e.  A  ps )
bnj31.2  |-  ( ps 
->  ch )
Assertion
Ref Expression
bnj31  |-  ( ph  ->  E. x  e.  A  ch )

Proof of Theorem bnj31
StepHypRef Expression
1 bnj31.1 . 2  |-  ( ph  ->  E. x  e.  A  ps )
2 bnj31.2 . . 3  |-  ( ps 
->  ch )
32reximi 2781 . 2  |-  ( E. x  e.  A  ps  ->  E. x  e.  A  ch )
41, 3syl 16 1  |-  ( ph  ->  E. x  e.  A  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2675
This theorem is referenced by:  bnj168  28815  bnj110  28947  bnj906  29019  bnj1253  29104  bnj1280  29107  bnj1296  29108  bnj1371  29116  bnj1497  29147  bnj1498  29148  bnj1501  29154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548  df-ral 2679  df-rex 2680
  Copyright terms: Public domain W3C validator