Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj334 Structured version   Unicode version

Theorem bnj334 28978
Description:  /\-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj334  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ch  /\ 
ph  /\  ps  /\  th ) )

Proof of Theorem bnj334
StepHypRef Expression
1 bnj290 28975 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ph  /\ 
ch  /\  th  /\  ps ) )
2 bnj257 28972 . 2  |-  ( (
ph  /\  ch  /\  th  /\  ps )  <->  ( ph  /\ 
ch  /\  ps  /\  th ) )
3 bnj312 28977 . 2  |-  ( (
ph  /\  ch  /\  ps  /\ 
th )  <->  ( ch  /\ 
ph  /\  ps  /\  th ) )
41, 2, 33bitri 263 1  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ch  /\ 
ph  /\  ps  /\  th ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ w-bnj17 28951
This theorem is referenced by:  bnj345  28979  bnj518  29158  bnj916  29205  bnj929  29208
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-bnj17 28952
  Copyright terms: Public domain W3C validator