Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj517 Structured version   Unicode version

Theorem bnj517 29354
Description: Technical lemma for bnj518 29355. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj517.1  |-  ( ph  <->  ( F `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj517.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj517  |-  ( ( N  e.  om  /\  ph 
/\  ps )  ->  A. n  e.  N  ( F `  n )  C_  A
)
Distinct variable groups:    i, n, y, A    i, F, n   
i, N, n
Allowed substitution hints:    ph( y, i, n)    ps( y, i, n)    R( y, i, n)    F( y)    N( y)    X( y, i, n)

Proof of Theorem bnj517
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 fveq2 5757 . . . . . 6  |-  ( m  =  (/)  ->  ( F `
 m )  =  ( F `  (/) ) )
2 simpl2 962 . . . . . . 7  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  ph )
3 bnj517.1 . . . . . . 7  |-  ( ph  <->  ( F `  (/) )  = 
pred ( X ,  A ,  R )
)
42, 3sylib 190 . . . . . 6  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  ( F `  (/) )  =  pred ( X ,  A ,  R ) )
51, 4sylan9eqr 2496 . . . . 5  |-  ( ( ( ( N  e. 
om  /\  ph  /\  ps )  /\  m  e.  N
)  /\  m  =  (/) )  ->  ( F `  m )  =  pred ( X ,  A ,  R ) )
6 bnj213 29351 . . . . 5  |-  pred ( X ,  A ,  R )  C_  A
75, 6syl6eqss 3384 . . . 4  |-  ( ( ( ( N  e. 
om  /\  ph  /\  ps )  /\  m  e.  N
)  /\  m  =  (/) )  ->  ( F `  m )  C_  A
)
8 bnj517.2 . . . . . . 7  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )
9 r19.29r 2853 . . . . . . . . . 10  |-  ( ( E. i  e.  om  m  =  suc  i  /\  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )  ->  E. i  e.  om  ( m  =  suc  i  /\  ( suc  i  e.  N  ->  ( F `
 suc  i )  =  U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) ) )
10 eleq1 2502 . . . . . . . . . . . . . 14  |-  ( m  =  suc  i  -> 
( m  e.  N  <->  suc  i  e.  N ) )
1110biimpd 200 . . . . . . . . . . . . 13  |-  ( m  =  suc  i  -> 
( m  e.  N  ->  suc  i  e.  N
) )
12 fveq2 5757 . . . . . . . . . . . . . . 15  |-  ( m  =  suc  i  -> 
( F `  m
)  =  ( F `
 suc  i )
)
1312eqeq1d 2450 . . . . . . . . . . . . . 14  |-  ( m  =  suc  i  -> 
( ( F `  m )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R )  <->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )
14 bnj213 29351 . . . . . . . . . . . . . . . . 17  |-  pred (
y ,  A ,  R )  C_  A
1514rgenw 2779 . . . . . . . . . . . . . . . 16  |-  A. y  e.  ( F `  i
)  pred ( y ,  A ,  R ) 
C_  A
16 iunss 4156 . . . . . . . . . . . . . . . 16  |-  ( U_ y  e.  ( F `  i )  pred (
y ,  A ,  R )  C_  A  <->  A. y  e.  ( F `
 i )  pred ( y ,  A ,  R )  C_  A
)
1715, 16mpbir 202 . . . . . . . . . . . . . . 15  |-  U_ y  e.  ( F `  i
)  pred ( y ,  A ,  R ) 
C_  A
18 sseq1 3355 . . . . . . . . . . . . . . 15  |-  ( ( F `  m )  =  U_ y  e.  ( F `  i
)  pred ( y ,  A ,  R )  ->  ( ( F `
 m )  C_  A 
<-> 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) 
C_  A ) )
1917, 18mpbiri 226 . . . . . . . . . . . . . 14  |-  ( ( F `  m )  =  U_ y  e.  ( F `  i
)  pred ( y ,  A ,  R )  ->  ( F `  m )  C_  A
)
2013, 19syl6bir 222 . . . . . . . . . . . . 13  |-  ( m  =  suc  i  -> 
( ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R )  ->  ( F `  m )  C_  A ) )
2111, 20imim12d 71 . . . . . . . . . . . 12  |-  ( m  =  suc  i  -> 
( ( suc  i  e.  N  ->  ( F `
 suc  i )  =  U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) )  ->  ( m  e.  N  ->  ( F `
 m )  C_  A ) ) )
2221imp 420 . . . . . . . . . . 11  |-  ( ( m  =  suc  i  /\  ( suc  i  e.  N  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )  ->  (
m  e.  N  -> 
( F `  m
)  C_  A )
)
2322rexlimivw 2832 . . . . . . . . . 10  |-  ( E. i  e.  om  (
m  =  suc  i  /\  ( suc  i  e.  N  ->  ( F `  suc  i )  = 
U_ y  e.  ( F `  i ) 
pred ( y ,  A ,  R ) ) )  ->  (
m  e.  N  -> 
( F `  m
)  C_  A )
)
249, 23syl 16 . . . . . . . . 9  |-  ( ( E. i  e.  om  m  =  suc  i  /\  A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) ) )  ->  ( m  e.  N  ->  ( F `  m )  C_  A
) )
2524ex 425 . . . . . . . 8  |-  ( E. i  e.  om  m  =  suc  i  ->  ( A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) )  -> 
( m  e.  N  ->  ( F `  m
)  C_  A )
) )
2625com3l 78 . . . . . . 7  |-  ( A. i  e.  om  ( suc  i  e.  N  ->  ( F `  suc  i )  =  U_ y  e.  ( F `  i )  pred (
y ,  A ,  R ) )  -> 
( m  e.  N  ->  ( E. i  e. 
om  m  =  suc  i  ->  ( F `  m )  C_  A
) ) )
278, 26sylbi 189 . . . . . 6  |-  ( ps 
->  ( m  e.  N  ->  ( E. i  e. 
om  m  =  suc  i  ->  ( F `  m )  C_  A
) ) )
28273ad2ant3 981 . . . . 5  |-  ( ( N  e.  om  /\  ph 
/\  ps )  ->  (
m  e.  N  -> 
( E. i  e. 
om  m  =  suc  i  ->  ( F `  m )  C_  A
) ) )
2928imp31 423 . . . 4  |-  ( ( ( ( N  e. 
om  /\  ph  /\  ps )  /\  m  e.  N
)  /\  E. i  e.  om  m  =  suc  i )  ->  ( F `  m )  C_  A )
30 simpr 449 . . . . . 6  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  m  e.  N )
31 simpl1 961 . . . . . 6  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  N  e.  om )
32 elnn 4884 . . . . . 6  |-  ( ( m  e.  N  /\  N  e.  om )  ->  m  e.  om )
3330, 31, 32syl2anc 644 . . . . 5  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  m  e.  om )
34 nn0suc 4898 . . . . 5  |-  ( m  e.  om  ->  (
m  =  (/)  \/  E. i  e.  om  m  =  suc  i ) )
3533, 34syl 16 . . . 4  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  ( m  =  (/)  \/  E. i  e.  om  m  =  suc  i ) )
367, 29, 35mpjaodan 763 . . 3  |-  ( ( ( N  e.  om  /\ 
ph  /\  ps )  /\  m  e.  N
)  ->  ( F `  m )  C_  A
)
3736ralrimiva 2795 . 2  |-  ( ( N  e.  om  /\  ph 
/\  ps )  ->  A. m  e.  N  ( F `  m )  C_  A
)
38 fveq2 5757 . . . 4  |-  ( m  =  n  ->  ( F `  m )  =  ( F `  n ) )
3938sseq1d 3361 . . 3  |-  ( m  =  n  ->  (
( F `  m
)  C_  A  <->  ( F `  n )  C_  A
) )
4039cbvralv 2938 . 2  |-  ( A. m  e.  N  ( F `  m )  C_  A  <->  A. n  e.  N  ( F `  n ) 
C_  A )
4137, 40sylib 190 1  |-  ( ( N  e.  om  /\  ph 
/\  ps )  ->  A. n  e.  N  ( F `  n )  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   A.wral 2711   E.wrex 2712    C_ wss 3306   (/)c0 3613   U_ciun 4117   suc csuc 4612   omcom 4874   ` cfv 5483    predc-bnj14 29150
This theorem is referenced by:  bnj518  29355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-tr 4328  df-eprel 4523  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-iota 5447  df-fv 5491  df-bnj14 29151
  Copyright terms: Public domain W3C validator