Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj518 Unicode version

Theorem bnj518 29234
Description: Technical lemma for bnj852 29269. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj518.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj518.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj518.3  |-  ( ta  <->  (
ph  /\  ps  /\  n  e.  om  /\  p  e.  n ) )
Assertion
Ref Expression
bnj518  |-  ( ( R  FrSe  A  /\  ta )  ->  A. y  e.  ( f `  p
)  pred ( y ,  A ,  R )  e.  _V )
Distinct variable groups:    f, i, p, y    i, n, p    A, i, p, y    y, R
Allowed substitution hints:    ph( x, y, f, i, n, p)    ps( x, y, f, i, n, p)    ta( x, y, f, i, n, p)    A( x, f, n)    R( x, f, i, n, p)

Proof of Theorem bnj518
StepHypRef Expression
1 bnj518.3 . . . 4  |-  ( ta  <->  (
ph  /\  ps  /\  n  e.  om  /\  p  e.  n ) )
2 bnj334 29054 . . . 4  |-  ( (
ph  /\  ps  /\  n  e.  om  /\  p  e.  n )  <->  ( n  e.  om  /\  ph  /\  ps  /\  p  e.  n
) )
31, 2bitri 240 . . 3  |-  ( ta  <->  ( n  e.  om  /\  ph 
/\  ps  /\  p  e.  n ) )
4 df-bnj17 29028 . . . 4  |-  ( ( n  e.  om  /\  ph 
/\  ps  /\  p  e.  n )  <->  ( (
n  e.  om  /\  ph 
/\  ps )  /\  p  e.  n ) )
5 bnj518.1 . . . . . 6  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
6 bnj518.2 . . . . . 6  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
75, 6bnj517 29233 . . . . 5  |-  ( ( n  e.  om  /\  ph 
/\  ps )  ->  A. p  e.  n  ( f `  p )  C_  A
)
87r19.21bi 2654 . . . 4  |-  ( ( ( n  e.  om  /\ 
ph  /\  ps )  /\  p  e.  n
)  ->  ( f `  p )  C_  A
)
94, 8sylbi 187 . . 3  |-  ( ( n  e.  om  /\  ph 
/\  ps  /\  p  e.  n )  ->  (
f `  p )  C_  A )
103, 9sylbi 187 . 2  |-  ( ta 
->  ( f `  p
)  C_  A )
11 ssel 3187 . . . 4  |-  ( ( f `  p ) 
C_  A  ->  (
y  e.  ( f `
 p )  -> 
y  e.  A ) )
12 bnj93 29211 . . . . 5  |-  ( ( R  FrSe  A  /\  y  e.  A )  ->  pred ( y ,  A ,  R )  e.  _V )
1312ex 423 . . . 4  |-  ( R 
FrSe  A  ->  ( y  e.  A  ->  pred (
y ,  A ,  R )  e.  _V ) )
1411, 13sylan9r 639 . . 3  |-  ( ( R  FrSe  A  /\  ( f `  p
)  C_  A )  ->  ( y  e.  ( f `  p )  ->  pred ( y ,  A ,  R )  e.  _V ) )
1514ralrimiv 2638 . 2  |-  ( ( R  FrSe  A  /\  ( f `  p
)  C_  A )  ->  A. y  e.  ( f `  p ) 
pred ( y ,  A ,  R )  e.  _V )
1610, 15sylan2 460 1  |-  ( ( R  FrSe  A  /\  ta )  ->  A. y  e.  ( f `  p
)  pred ( y ,  A ,  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165   (/)c0 3468   U_ciun 3921   suc csuc 4410   omcom 4672   ` cfv 5271    /\ w-bnj17 29027    predc-bnj14 29029    FrSe w-bnj15 29033
This theorem is referenced by:  bnj535  29238  bnj546  29244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-iota 5235  df-fv 5279  df-bnj17 29028  df-bnj14 29030  df-bnj13 29032  df-bnj15 29034
  Copyright terms: Public domain W3C validator