Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj518 Unicode version

Theorem bnj518 28918
Description: Technical lemma for bnj852 28953. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj518.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj518.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj518.3  |-  ( ta  <->  (
ph  /\  ps  /\  n  e.  om  /\  p  e.  n ) )
Assertion
Ref Expression
bnj518  |-  ( ( R  FrSe  A  /\  ta )  ->  A. y  e.  ( f `  p
)  pred ( y ,  A ,  R )  e.  _V )
Distinct variable groups:    f, i, p, y    i, n, p    A, i, p, y    y, R
Allowed substitution hints:    ph( x, y, f, i, n, p)    ps( x, y, f, i, n, p)    ta( x, y, f, i, n, p)    A( x, f, n)    R( x, f, i, n, p)

Proof of Theorem bnj518
StepHypRef Expression
1 bnj518.3 . . . 4  |-  ( ta  <->  (
ph  /\  ps  /\  n  e.  om  /\  p  e.  n ) )
2 bnj334 28738 . . . 4  |-  ( (
ph  /\  ps  /\  n  e.  om  /\  p  e.  n )  <->  ( n  e.  om  /\  ph  /\  ps  /\  p  e.  n
) )
31, 2bitri 240 . . 3  |-  ( ta  <->  ( n  e.  om  /\  ph 
/\  ps  /\  p  e.  n ) )
4 df-bnj17 28712 . . . 4  |-  ( ( n  e.  om  /\  ph 
/\  ps  /\  p  e.  n )  <->  ( (
n  e.  om  /\  ph 
/\  ps )  /\  p  e.  n ) )
5 bnj518.1 . . . . . 6  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
6 bnj518.2 . . . . . 6  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
75, 6bnj517 28917 . . . . 5  |-  ( ( n  e.  om  /\  ph 
/\  ps )  ->  A. p  e.  n  ( f `  p )  C_  A
)
87r19.21bi 2641 . . . 4  |-  ( ( ( n  e.  om  /\ 
ph  /\  ps )  /\  p  e.  n
)  ->  ( f `  p )  C_  A
)
94, 8sylbi 187 . . 3  |-  ( ( n  e.  om  /\  ph 
/\  ps  /\  p  e.  n )  ->  (
f `  p )  C_  A )
103, 9sylbi 187 . 2  |-  ( ta 
->  ( f `  p
)  C_  A )
11 ssel 3174 . . . 4  |-  ( ( f `  p ) 
C_  A  ->  (
y  e.  ( f `
 p )  -> 
y  e.  A ) )
12 bnj93 28895 . . . . 5  |-  ( ( R  FrSe  A  /\  y  e.  A )  ->  pred ( y ,  A ,  R )  e.  _V )
1312ex 423 . . . 4  |-  ( R 
FrSe  A  ->  ( y  e.  A  ->  pred (
y ,  A ,  R )  e.  _V ) )
1411, 13sylan9r 639 . . 3  |-  ( ( R  FrSe  A  /\  ( f `  p
)  C_  A )  ->  ( y  e.  ( f `  p )  ->  pred ( y ,  A ,  R )  e.  _V ) )
1514ralrimiv 2625 . 2  |-  ( ( R  FrSe  A  /\  ( f `  p
)  C_  A )  ->  A. y  e.  ( f `  p ) 
pred ( y ,  A ,  R )  e.  _V )
1610, 15sylan2 460 1  |-  ( ( R  FrSe  A  /\  ta )  ->  A. y  e.  ( f `  p
)  pred ( y ,  A ,  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   (/)c0 3455   U_ciun 3905   suc csuc 4394   omcom 4656   ` cfv 5255    /\ w-bnj17 28711    predc-bnj14 28713    FrSe w-bnj15 28717
This theorem is referenced by:  bnj535  28922  bnj546  28928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-iota 5219  df-fv 5263  df-bnj17 28712  df-bnj14 28714  df-bnj13 28716  df-bnj15 28718
  Copyright terms: Public domain W3C validator