Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj525 Unicode version

Theorem bnj525 28444
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj525.1  |-  A  e. 
_V
Assertion
Ref Expression
bnj525  |-  ( [. A  /  x ]. ph  <->  ph )
Distinct variable group:    ph, x
Allowed substitution hint:    A( x)

Proof of Theorem bnj525
StepHypRef Expression
1 bnj525.1 . 2  |-  A  e. 
_V
2 sbcg 3169 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  ph ) )
31, 2ax-mp 8 1  |-  ( [. A  /  x ]. ph  <->  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    e. wcel 1717   _Vcvv 2899   [.wsbc 3104
This theorem is referenced by:  bnj538  28446  bnj976  28486  bnj91  28570  bnj92  28571  bnj523  28596  bnj539  28600  bnj540  28601  bnj1040  28679
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-v 2901  df-sbc 3105
  Copyright terms: Public domain W3C validator