Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj540 Structured version   Unicode version

Theorem bnj540 29263
Description: Technical lemma for bnj852 29292. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj540.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj540.2  |-  ( ps"  <->  [. G  / 
f ]. ps )
bnj540.3  |-  G  e. 
_V
Assertion
Ref Expression
bnj540  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
Distinct variable groups:    A, f    f, G, i, y    f, N    R, f
Allowed substitution hints:    ps( y, f, i)    A( y, i)    R( y, i)    N( y, i)    ps"( y, f, i)

Proof of Theorem bnj540
StepHypRef Expression
1 bnj540.2 . 2  |-  ( ps"  <->  [. G  / 
f ]. ps )
2 bnj540.1 . . . 4  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
32sbcbii 3216 . . 3  |-  ( [. G  /  f ]. ps  <->  [. G  /  f ]. A. i  e.  om  ( suc  i  e.  N  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
4 bnj540.3 . . . 4  |-  G  e. 
_V
54bnj538 29108 . . 3  |-  ( [. G  /  f ]. A. i  e.  om  ( suc  i  e.  N  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  [. G  / 
f ]. ( suc  i  e.  N  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
6 sbcimg 3202 . . . . 5  |-  ( G  e.  _V  ->  ( [. G  /  f ]. ( suc  i  e.  N  ->  ( f `  suc  i )  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) )  <->  ( [. G  /  f ]. suc  i  e.  N  ->  [. G  /  f ]. ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
74, 6ax-mp 8 . . . 4  |-  ( [. G  /  f ]. ( suc  i  e.  N  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  ( [. G  /  f ]. suc  i  e.  N  ->  [. G  /  f ]. ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
87ralbii 2729 . . 3  |-  ( A. i  e.  om  [. G  /  f ]. ( suc  i  e.  N  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( [. G  /  f ]. suc  i  e.  N  ->  [. G  /  f ]. ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
93, 5, 83bitri 263 . 2  |-  ( [. G  /  f ]. ps  <->  A. i  e.  om  ( [. G  /  f ]. suc  i  e.  N  ->  [. G  /  f ]. ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
104bnj525 29106 . . . 4  |-  ( [. G  /  f ]. suc  i  e.  N  <->  suc  i  e.  N )
11 fveq1 5727 . . . . . 6  |-  ( f  =  G  ->  (
f `  suc  i )  =  ( G `  suc  i ) )
12 fveq1 5727 . . . . . . 7  |-  ( f  =  G  ->  (
f `  i )  =  ( G `  i ) )
1312bnj1113 29156 . . . . . 6  |-  ( f  =  G  ->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) )
1411, 13eqeq12d 2450 . . . . 5  |-  ( f  =  G  ->  (
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  <->  ( G `  suc  i )  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
154, 14sbcie 3195 . . . 4  |-  ( [. G  /  f ]. (
f `  suc  i )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  <-> 
( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
1610, 15imbi12i 317 . . 3  |-  ( (
[. G  /  f ]. suc  i  e.  N  ->  [. G  /  f ]. ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  ( suc  i  e.  N  ->  ( G `  suc  i
)  =  U_ y  e.  ( G `  i
)  pred ( y ,  A ,  R ) ) )
1716ralbii 2729 . 2  |-  ( A. i  e.  om  ( [. G  /  f ]. suc  i  e.  N  ->  [. G  /  f ]. ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
181, 9, 173bitri 263 1  |-  ( ps"  <->  A. i  e.  om  ( suc  i  e.  N  ->  ( G `
 suc  i )  =  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956   [.wsbc 3161   U_ciun 4093   suc csuc 4583   omcom 4845   ` cfv 5454    predc-bnj14 29052
This theorem is referenced by:  bnj580  29284  bnj607  29287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-v 2958  df-sbc 3162  df-in 3327  df-ss 3334  df-uni 4016  df-iun 4095  df-br 4213  df-iota 5418  df-fv 5462
  Copyright terms: Public domain W3C validator