Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj543 Structured version   Unicode version

Theorem bnj543 29201
Description: Technical lemma for bnj852 29229. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj543.1  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj543.2  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj543.3  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj543.4  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj543.5  |-  ( si  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m )
)
Assertion
Ref Expression
bnj543  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Distinct variable groups:    A, i, p, y    R, i, p, y    f, i, p, y    i, m, p   
p, ph'
Allowed substitution hints:    ta( x, y, f, i, m, n, p)    si( x, y, f, i, m, n, p)    A( x, f, m, n)    R( x, f, m, n)    G( x, y, f, i, m, n, p)    ph'( x, y, f, i, m, n)    ps'( x, y, f, i, m, n, p)

Proof of Theorem bnj543
StepHypRef Expression
1 bnj257 29008 . . . . . . 7  |-  ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
)  <->  ( ( ph'  /\  ps' )  /\  (
m  e.  om  /\  p  e.  m )  /\  f  Fn  m  /\  n  =  suc  m ) )
2 bnj268 29010 . . . . . . 7  |-  ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m )  /\  f  Fn  m  /\  n  =  suc  m )  <->  ( ( ph' 
/\  ps' )  /\  f  Fn  m  /\  (
m  e.  om  /\  p  e.  m )  /\  n  =  suc  m ) )
31, 2bitri 241 . . . . . 6  |-  ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
)  <->  ( ( ph'  /\  ps' )  /\  f  Fn  m  /\  (
m  e.  om  /\  p  e.  m )  /\  n  =  suc  m ) )
4 bnj253 29005 . . . . . 6  |-  ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
)  <->  ( ( ( ph'  /\  ps' )  /\  (
m  e.  om  /\  p  e.  m )
)  /\  n  =  suc  m  /\  f  Fn  m ) )
5 bnj256 29007 . . . . . 6  |-  ( ( ( ph'  /\  ps' )  /\  f  Fn  m  /\  ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m )  <->  ( (
( ph'  /\  ps' )  /\  f  Fn  m )  /\  ( ( m  e. 
om  /\  p  e.  m )  /\  n  =  suc  m ) ) )
63, 4, 53bitr3i 267 . . . . 5  |-  ( ( ( ( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m ) )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( (
( ph'  /\  ps' )  /\  f  Fn  m )  /\  ( ( m  e. 
om  /\  p  e.  m )  /\  n  =  suc  m ) ) )
7 bnj256 29007 . . . . . 6  |-  ( ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m )  <->  ( ( ph' 
/\  ps' )  /\  (
m  e.  om  /\  p  e.  m )
) )
873anbi1i 1144 . . . . 5  |-  ( ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( (
( ph'  /\  ps' )  /\  ( m  e.  om  /\  p  e.  m ) )  /\  n  =  suc  m  /\  f  Fn  m ) )
9 bnj543.4 . . . . . . 7  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
10 bnj170 28999 . . . . . . 7  |-  ( ( f  Fn  m  /\  ph' 
/\  ps' )  <->  ( ( ph' 
/\  ps' )  /\  f  Fn  m ) )
119, 10bitri 241 . . . . . 6  |-  ( ta  <->  ( ( ph'  /\  ps' )  /\  f  Fn  m )
)
12 bnj543.5 . . . . . . 7  |-  ( si  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m )
)
13 3anan32 948 . . . . . . 7  |-  ( ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m )  <->  ( ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m ) )
1412, 13bitri 241 . . . . . 6  |-  ( si  <->  ( ( m  e.  om  /\  p  e.  m )  /\  n  =  suc  m ) )
1511, 14anbi12i 679 . . . . 5  |-  ( ( ta  /\  si )  <->  ( ( ( ph'  /\  ps' )  /\  f  Fn  m )  /\  ( ( m  e. 
om  /\  p  e.  m )  /\  n  =  suc  m ) ) )
166, 8, 153bitr4ri 270 . . . 4  |-  ( ( ta  /\  si )  <->  ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m ) )
1716anbi2i 676 . . 3  |-  ( ( R  FrSe  A  /\  ( ta  /\  si )
)  <->  ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
) ) )
18 3anass 940 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  si )  <->  ( R  FrSe  A  /\  ( ta 
/\  si ) ) )
19 bnj252 29004 . . 3  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m ) ) )
2017, 18, 193bitr4i 269 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  si )  <->  ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m
) )
21 df-suc 4579 . . . . . . 7  |-  suc  m  =  ( m  u. 
{ m } )
2221eqeq2i 2445 . . . . . 6  |-  ( n  =  suc  m  <->  n  =  ( m  u.  { m } ) )
23223anbi2i 1145 . . . . 5  |-  ( ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( ( ph' 
/\  ps'  /\  m  e. 
om  /\  p  e.  m )  /\  n  =  ( m  u. 
{ m } )  /\  f  Fn  m
) )
2423anbi2i 676 . . . 4  |-  ( ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m ) )  <->  ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m )  /\  n  =  ( m  u. 
{ m } )  /\  f  Fn  m
) ) )
25 bnj252 29004 . . . 4  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  ( m  u. 
{ m } )  /\  f  Fn  m
)  <->  ( R  FrSe  A  /\  ( ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  ( m  u.  { m } )  /\  f  Fn  m ) ) )
2624, 19, 253bitr4i 269 . . 3  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  <->  ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  ( m  u.  { m } )  /\  f  Fn  m ) )
27 bnj543.1 . . . 4  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
28 bnj543.2 . . . 4  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
29 bnj543.3 . . . 4  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
30 biid 228 . . . 4  |-  ( ( ph'  /\  ps'  /\  m  e. 
om  /\  p  e.  m )  <->  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m ) )
3127, 28, 29, 30bnj535 29198 . . 3  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  ( m  u. 
{ m } )  /\  f  Fn  m
)  ->  G  Fn  n )
3226, 31sylbi 188 . 2  |-  ( ( R  FrSe  A  /\  ( ph'  /\  ps'  /\  m  e.  om  /\  p  e.  m )  /\  n  =  suc  m  /\  f  Fn  m )  ->  G  Fn  n )
3320, 32sylbi 188 1  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697    u. cun 3310   (/)c0 3620   {csn 3806   <.cop 3809   U_ciun 4085   suc csuc 4575   omcom 4837    Fn wfn 5441   ` cfv 5446    /\ w-bnj17 28987    predc-bnj14 28989    FrSe w-bnj15 28993
This theorem is referenced by:  bnj544  29202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693  ax-reg 7552
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-bnj17 28988  df-bnj14 28990  df-bnj13 28992  df-bnj15 28994
  Copyright terms: Public domain W3C validator