Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj544 Unicode version

Theorem bnj544 28299
Description: Technical lemma for bnj852 28326. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj544.1  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj544.2  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj544.3  |-  D  =  ( om  \  { (/)
} )
bnj544.4  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj544.5  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj544.6  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
Assertion
Ref Expression
bnj544  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Distinct variable groups:    A, i, p, y    R, i, p, y    f, i, p, y    i, m, p   
p, ph'
Allowed substitution hints:    ta( x, y, f, i, m, n, p)    si( x, y, f, i, m, n, p)    A( x, f, m, n)    D( x, y, f, i, m, n, p)    R( x, f, m, n)    G( x, y, f, i, m, n, p)    ph'( x, y, f, i, m, n)    ps'( x, y, f, i, m, n, p)

Proof of Theorem bnj544
StepHypRef Expression
1 bnj544.6 . . 3  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
2 bnj544.3 . . . . 5  |-  D  =  ( om  \  { (/)
} )
32bnj923 28171 . . . 4  |-  ( m  e.  D  ->  m  e.  om )
433anim1i 1138 . . 3  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )  ->  ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m
) )
51, 4sylbi 187 . 2  |-  ( si  ->  ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m
) )
6 bnj544.1 . . 3  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
7 bnj544.2 . . 3  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
8 bnj544.4 . . 3  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
9 bnj544.5 . . 3  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
10 biid 227 . . 3  |-  ( ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m )  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  e.  m )
)
116, 7, 8, 9, 10bnj543 28298 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  ( m  e. 
om  /\  n  =  suc  m  /\  p  e.  m ) )  ->  G  Fn  n )
125, 11syl3an3 1217 1  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    \ cdif 3149    u. cun 3150   (/)c0 3455   {csn 3640   <.cop 3643   U_ciun 3905   suc csuc 4394   omcom 4656    Fn wfn 5250   ` cfv 5255    predc-bnj14 28086    FrSe w-bnj15 28090
This theorem is referenced by:  bnj600  28324  bnj908  28336
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512  ax-reg 7306
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-bnj17 28085  df-bnj14 28087  df-bnj13 28089  df-bnj15 28091
  Copyright terms: Public domain W3C validator