Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj556 Structured version   Unicode version

Theorem bnj556 29345
Description: Technical lemma for bnj852 29366. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj556.18  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj556.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
Assertion
Ref Expression
bnj556  |-  ( et 
->  si )

Proof of Theorem bnj556
StepHypRef Expression
1 vex 2961 . . . . 5  |-  p  e. 
_V
21bnj216 29173 . . . 4  |-  ( m  =  suc  p  ->  p  e.  m )
323anim3i 1142 . . 3  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  m  =  suc  p )  ->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m ) )
43adantr 453 . 2  |-  ( ( ( m  e.  D  /\  n  =  suc  m  /\  m  =  suc  p )  /\  p  e.  om )  ->  (
m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
5 bnj556.19 . . 3  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
6 bnj258 29146 . . 3  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  <->  ( (
m  e.  D  /\  n  =  suc  m  /\  m  =  suc  p )  /\  p  e.  om ) )
75, 6bitri 242 . 2  |-  ( et  <->  ( ( m  e.  D  /\  n  =  suc  m  /\  m  =  suc  p )  /\  p  e.  om ) )
8 bnj556.18 . 2  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
94, 7, 83imtr4i 259 1  |-  ( et 
->  si )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   suc csuc 4586   omcom 4848    /\ w-bnj17 29124
This theorem is referenced by:  bnj557  29346  bnj561  29348  bnj562  29349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-un 3327  df-sn 3822  df-suc 4590  df-bnj17 29125
  Copyright terms: Public domain W3C validator