Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj556 Unicode version

Theorem bnj556 28932
Description: Technical lemma for bnj852 28953. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj556.18  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj556.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
Assertion
Ref Expression
bnj556  |-  ( et 
->  si )

Proof of Theorem bnj556
StepHypRef Expression
1 vex 2791 . . . . 5  |-  p  e. 
_V
21bnj216 28760 . . . 4  |-  ( m  =  suc  p  ->  p  e.  m )
323anim3i 1139 . . 3  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  m  =  suc  p )  ->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m ) )
43adantr 451 . 2  |-  ( ( ( m  e.  D  /\  n  =  suc  m  /\  m  =  suc  p )  /\  p  e.  om )  ->  (
m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
5 bnj556.19 . . 3  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
6 bnj258 28733 . . 3  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  <->  ( (
m  e.  D  /\  n  =  suc  m  /\  m  =  suc  p )  /\  p  e.  om ) )
75, 6bitri 240 . 2  |-  ( et  <->  ( ( m  e.  D  /\  n  =  suc  m  /\  m  =  suc  p )  /\  p  e.  om ) )
8 bnj556.18 . 2  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
94, 7, 83imtr4i 257 1  |-  ( et 
->  si )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   suc csuc 4394   omcom 4656    /\ w-bnj17 28711
This theorem is referenced by:  bnj557  28933  bnj561  28935  bnj562  28936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-sn 3646  df-suc 4398  df-bnj17 28712
  Copyright terms: Public domain W3C validator