Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj558 Unicode version

Theorem bnj558 28934
Description: Technical lemma for bnj852 28953. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj558.3  |-  D  =  ( om  \  { (/)
} )
bnj558.16  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
bnj558.17  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj558.18  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj558.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
bnj558.20  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
bnj558.21  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
bnj558.22  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
bnj558.23  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj558.24  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
bnj558.25  |-  G  =  ( f  u.  { <. m ,  C >. } )
bnj558.28  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj558.29  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj558.36  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Assertion
Ref Expression
bnj558  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze )  ->  ( G `  suc  i )  =  K )
Distinct variable groups:    A, i, p, y    y, G    R, i, p, y    f, i, p, y    i, m, p    p, ph'
Allowed substitution hints:    ta( x, y, f, i, m, n, p)    et( x, y, f, i, m, n, p)    ze( x, y, f, i, m, n, p)    si( x, y, f, i, m, n, p)    A( x, f, m, n)    B( x, y, f, i, m, n, p)    C( x, y, f, i, m, n, p)    D( x, y, f, i, m, n, p)    R( x, f, m, n)    G( x, f, i, m, n, p)    K( x, y, f, i, m, n, p)    L( x, y, f, i, m, n, p)    ph'( x, y, f, i, m, n)    ps'( x, y, f, i, m, n, p)

Proof of Theorem bnj558
StepHypRef Expression
1 bnj558.3 . . 3  |-  D  =  ( om  \  { (/)
} )
2 bnj558.16 . . 3  |-  G  =  ( f  u.  { <. m ,  U_ y  e.  ( f `  p
)  pred ( y ,  A ,  R )
>. } )
3 bnj558.17 . . 3  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
4 bnj558.18 . . 3  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
5 bnj558.19 . . 3  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
6 bnj558.20 . . 3  |-  ( ze  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =  suc  i ) )
7 bnj558.21 . . 3  |-  B  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R )
8 bnj558.22 . . 3  |-  C  = 
U_ y  e.  ( f `  p ) 
pred ( y ,  A ,  R )
9 bnj558.23 . . 3  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
10 bnj558.24 . . 3  |-  L  = 
U_ y  e.  ( G `  p ) 
pred ( y ,  A ,  R )
11 bnj558.25 . . 3  |-  G  =  ( f  u.  { <. m ,  C >. } )
12 bnj558.28 . . 3  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( x ,  A ,  R ) )
13 bnj558.29 . . 3  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
14 bnj558.36 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14bnj557 28933 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze )  ->  ( G `  m )  =  L )
16 bnj422 28740 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze ) 
<->  ( et  /\  ze  /\  R  FrSe  A  /\  ta ) )
17 bnj253 28729 . . . . 5  |-  ( ( et  /\  ze  /\  R  FrSe  A  /\  ta ) 
<->  ( ( et  /\  ze )  /\  R  FrSe  A  /\  ta ) )
1816, 17bitri 240 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze ) 
<->  ( ( et  /\  ze )  /\  R  FrSe  A  /\  ta ) )
1918simp1bi 970 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze )  ->  ( et  /\  ze ) )
205, 6, 9, 10, 9, 10bnj554 28931 . . 3  |-  ( ( et  /\  ze )  ->  ( ( G `  m )  =  L  <-> 
( G `  suc  i )  =  K ) )
2119, 20syl 15 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze )  ->  ( ( G `
 m )  =  L  <->  ( G `  suc  i )  =  K ) )
2215, 21mpbid 201 1  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  ze )  ->  ( G `  suc  i )  =  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    \ cdif 3149    u. cun 3150   (/)c0 3455   {csn 3640   <.cop 3643   U_ciun 3905   suc csuc 4394   omcom 4656    Fn wfn 5250   ` cfv 5255    /\ w-bnj17 28711    predc-bnj14 28713    FrSe w-bnj15 28717
This theorem is referenced by:  bnj571  28938
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512  ax-reg 7306
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-eprel 4305  df-id 4309  df-fr 4352  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-bnj17 28712
  Copyright terms: Public domain W3C validator