Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj561 Unicode version

Theorem bnj561 28605
Description: Technical lemma for bnj852 28623. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj561.18  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
bnj561.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
bnj561.37  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
Assertion
Ref Expression
bnj561  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )

Proof of Theorem bnj561
StepHypRef Expression
1 bnj561.18 . . 3  |-  ( si  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  m )
)
2 bnj561.19 . . 3  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
31, 2bnj556 28602 . 2  |-  ( et 
->  si )
4 bnj561.37 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  si )  ->  G  Fn  n )
53, 4syl3an3 1219 1  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1717   suc csuc 4517   omcom 4778    Fn wfn 5382    /\ w-bnj17 28381    FrSe w-bnj15 28387
This theorem is referenced by:  bnj600  28621  bnj908  28633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-v 2894  df-un 3261  df-sn 3756  df-suc 4521  df-bnj17 28382
  Copyright terms: Public domain W3C validator