Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj589 Unicode version

Theorem bnj589 28990
Description: Technical lemma for bnj852 29002. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj589.1  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj589  |-  ( ps  <->  A. k  e.  om  ( suc  k  e.  n  ->  ( f `  suc  k )  =  U_ y  e.  ( f `  k )  pred (
y ,  A ,  R ) ) )
Distinct variable groups:    A, i,
k    R, i, k    f,
i, k, y    i, n, k
Allowed substitution hints:    ps( y, f, i, k, n)    A( y, f, n)    R( y,
f, n)

Proof of Theorem bnj589
StepHypRef Expression
1 bnj589.1 . 2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
21bnj222 28964 1  |-  ( ps  <->  A. k  e.  om  ( suc  k  e.  n  ->  ( f `  suc  k )  =  U_ y  e.  ( f `  k )  pred (
y ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   A.wral 2670   U_ciun 4057   suc csuc 4547   omcom 4808   ` cfv 5417    predc-bnj14 28762
This theorem is referenced by:  bnj594  28993  bnj1128  29069  bnj1145  29072
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-suc 4551  df-iota 5381  df-fv 5425
  Copyright terms: Public domain W3C validator