Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj591 Structured version   Unicode version

Theorem bnj591 29282
 Description: Technical lemma for bnj852 29292. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj591.1
Assertion
Ref Expression
bnj591
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   (,,,)   (,,,,)   (,,,)   (,,,)

Proof of Theorem bnj591
StepHypRef Expression
1 bnj591.1 . . 3
21sbcbii 3216 . 2
3 vex 2959 . . 3
4 fveq2 5728 . . . . 5
5 fveq2 5728 . . . . 5
64, 5eqeq12d 2450 . . . 4
76imbi2d 308 . . 3
83, 7sbcie 3195 . 2
92, 8bitri 241 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   w3a 936   wceq 1652   wcel 1725  wsbc 3161  cfv 5454 This theorem is referenced by:  bnj580  29284 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462
 Copyright terms: Public domain W3C validator