Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj596 Unicode version

Theorem bnj596 28148
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj596.1  |-  ( ph  ->  A. x ph )
bnj596.2  |-  ( ph  ->  E. x ps )
Assertion
Ref Expression
bnj596  |-  ( ph  ->  E. x ( ph  /\ 
ps ) )

Proof of Theorem bnj596
StepHypRef Expression
1 bnj596.2 . . 3  |-  ( ph  ->  E. x ps )
21ancli 534 . 2  |-  ( ph  ->  ( ph  /\  E. x ps ) )
3 bnj596.1 . . . 4  |-  ( ph  ->  A. x ph )
43nfi 1538 . . 3  |-  F/ x ph
5419.42 1816 . 2  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )
62, 5sylibr 203 1  |-  ( ph  ->  E. x ( ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527   E.wex 1528
This theorem is referenced by:  bnj1275  28219  bnj1340  28229  bnj594  28317  bnj1398  28437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator