Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj601 Structured version   Unicode version

Theorem bnj601 29228
 Description: Technical lemma for bnj852 29229. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj601.1
bnj601.2
bnj601.3
bnj601.4
bnj601.5
Assertion
Ref Expression
bnj601
Distinct variable groups:   ,,,,,   ,,   ,,,,,   ,,,   ,,   ,
Allowed substitution hints:   (,,,)   (,,,,)   (,,,,,)   (,,,,,)   ()   (,,,)   ()

Proof of Theorem bnj601
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj601.1 . 2
2 bnj601.2 . 2
3 bnj601.3 . 2
4 bnj601.4 . 2
5 bnj601.5 . 2
6 biid 228 . 2
7 biid 228 . 2
8 biid 228 . 2
9 bnj602 29223 . . . . . . 7
109cbviunv 4122 . . . . . 6
1110opeq2i 3980 . . . . 5
1211sneqi 3818 . . . 4
1312uneq2i 3490 . . 3
14 dfsbcq 3155 . . 3
1513, 14ax-mp 8 . 2
16 dfsbcq 3155 . . 3
1713, 16ax-mp 8 . 2
18 dfsbcq 3155 . . 3
1913, 18ax-mp 8 . 2
2013eqcomi 2439 . 2
21 biid 228 . 2
22 biid 228 . 2
23 biid 228 . 2
24 biid 228 . 2
25 biid 228 . 2
26 eqid 2435 . 2
27 eqid 2435 . 2
28 eqid 2435 . 2
29 eqid 2435 . 2
301, 2, 3, 4, 5, 6, 7, 8, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20bnj600 29227 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   w3a 936   wceq 1652   wcel 1725  weu 2280   wne 2598  wral 2697  wsbc 3153   cdif 3309   cun 3310  c0 3620  csn 3806  cop 3809  ciun 4085   class class class wbr 4204   cep 4484   csuc 4575  com 4837   wfn 5441  cfv 5446  c1o 6709   w-bnj17 28987   c-bnj14 28989   w-bnj15 28993 This theorem is referenced by:  bnj852  29229 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-reg 7552 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-1o 6716  df-bnj17 28988  df-bnj14 28990  df-bnj13 28992  df-bnj15 28994
 Copyright terms: Public domain W3C validator