Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj609 Unicode version

Theorem bnj609 29265
Description: Technical lemma for bnj852 29269. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj609.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj609.2  |-  ( ph"  <->  [. G  / 
f ]. ph )
bnj609.3  |-  G  e. 
_V
Assertion
Ref Expression
bnj609  |-  ( ph"  <->  ( G `  (/) )  =  pred ( X ,  A ,  R ) )
Distinct variable groups:    A, f    R, f    f, X
Allowed substitution hints:    ph( f)    G( f)    ph"( f)

Proof of Theorem bnj609
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 bnj609.2 . 2  |-  ( ph"  <->  [. G  / 
f ]. ph )
2 bnj609.3 . . 3  |-  G  e. 
_V
3 dfsbcq 3006 . . 3  |-  ( e  =  G  ->  ( [. e  /  f ]. ph  <->  [. G  /  f ]. ph ) )
4 fveq1 5540 . . . 4  |-  ( e  =  G  ->  (
e `  (/) )  =  ( G `  (/) ) )
54eqeq1d 2304 . . 3  |-  ( e  =  G  ->  (
( e `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( G `  (/) )  = 
pred ( X ,  A ,  R )
) )
6 bnj609.1 . . . . 5  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
76sbcbii 3059 . . . 4  |-  ( [. e  /  f ]. ph  <->  [. e  / 
f ]. ( f `  (/) )  =  pred ( X ,  A ,  R ) )
8 vex 2804 . . . . 5  |-  e  e. 
_V
9 fveq1 5540 . . . . . 6  |-  ( f  =  e  ->  (
f `  (/) )  =  ( e `  (/) ) )
109eqeq1d 2304 . . . . 5  |-  ( f  =  e  ->  (
( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( e `  (/) )  = 
pred ( X ,  A ,  R )
) )
118, 10sbcie 3038 . . . 4  |-  ( [. e  /  f ]. (
f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( e `  (/) )  = 
pred ( X ,  A ,  R )
)
127, 11bitri 240 . . 3  |-  ( [. e  /  f ]. ph  <->  ( e `  (/) )  =  pred ( X ,  A ,  R ) )
132, 3, 5, 12vtoclb 2854 . 2  |-  ( [. G  /  f ]. ph  <->  ( G `  (/) )  =  pred ( X ,  A ,  R ) )
141, 13bitri 240 1  |-  ( ph"  <->  ( G `  (/) )  =  pred ( X ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1632    e. wcel 1696   _Vcvv 2801   [.wsbc 3004   (/)c0 3468   ` cfv 5271    predc-bnj14 29029
This theorem is referenced by:  bnj600  29267  bnj908  29279  bnj934  29283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-v 2803  df-sbc 3005  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279
  Copyright terms: Public domain W3C validator