Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj707 Structured version   Unicode version

Theorem bnj707 29185
Description:  /\-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj707.1  |-  ( ch 
->  ta )
Assertion
Ref Expression
bnj707  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  ->  ta )

Proof of Theorem bnj707
StepHypRef Expression
1 bnj258 29134 . . 3  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ( ph  /\  ps  /\  th )  /\  ch ) )
21simprbi 452 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  ->  ch )
3 bnj707.1 . 2  |-  ( ch 
->  ta )
42, 3syl 16 1  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    /\ w-bnj17 29112
This theorem is referenced by:  bnj771  29195  bnj998  29389  bnj1001  29391  bnj1006  29392  bnj1053  29407  bnj1121  29416  bnj1030  29418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939  df-bnj17 29113
  Copyright terms: Public domain W3C validator