Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj770 Unicode version

Theorem bnj770 28793
Description:  /\-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj770.1  |-  ( et  <->  (
ph  /\  ps  /\  ch  /\ 
th ) )
bnj770.2  |-  ( ps 
->  ta )
Assertion
Ref Expression
bnj770  |-  ( et 
->  ta )

Proof of Theorem bnj770
StepHypRef Expression
1 bnj770.1 . 2  |-  ( et  <->  (
ph  /\  ps  /\  ch  /\ 
th ) )
2 bnj770.2 . . 3  |-  ( ps 
->  ta )
32bnj706 28783 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  ->  ta )
41, 3sylbi 187 1  |-  ( et 
->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w-bnj17 28711
This theorem is referenced by:  bnj1235  28837  bnj605  28939  bnj607  28948  bnj983  28983  bnj1110  29012  bnj1145  29023  bnj1256  29045  bnj1296  29051  bnj1450  29080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-bnj17 28712
  Copyright terms: Public domain W3C validator