Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj849 Unicode version

Theorem bnj849 28635
Description: Technical lemma for bnj69 28718. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj849.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj849.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj849.3  |-  D  =  ( om  \  { (/)
} )
bnj849.4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj849.5  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
bnj849.6  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
bnj849.7  |-  ( ph'  <->  [. g  /  f ]. ph )
bnj849.8  |-  ( ps'  <->  [. g  /  f ]. ps )
bnj849.9  |-  ( th'  <->  [. g  / 
f ]. th )
bnj849.10  |-  ( ta  <->  ( R  FrSe  A  /\  X  e.  A )
)
Assertion
Ref Expression
bnj849  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  e.  _V )
Distinct variable groups:    A, f,
i, n, y    B, g    D, f, g, n    D, i    R, f, i, n, y    f, X, n    ch, f, g    ph, g    ps, g    ta, g, n    th, g
Allowed substitution hints:    ph( y, f, i, n)    ps( y,
f, i, n)    ch( y, i, n)    th( y,
f, i, n)    ta( y, f, i)    A( g)    B( y, f, i, n)    D( y)    R( g)    X( y, g, i)    ph'( y, f, g, i, n)    ps'( y, f, g, i, n)    th'( y, f, g, i, n)

Proof of Theorem bnj849
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bnj849.10 . 2  |-  ( ta  <->  ( R  FrSe  A  /\  X  e.  A )
)
2 bnj849.1 . . . 4  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
3 bnj849.2 . . . 4  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
4 bnj849.3 . . . 4  |-  D  =  ( om  \  { (/)
} )
5 bnj849.5 . . . 4  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
6 bnj849.6 . . . 4  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
72, 3, 4, 5, 6bnj865 28633 . . 3  |-  E. w A. n ( ch  ->  E. f  e.  w  th )
8 bnj849.4 . . . . . . . 8  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
9 bnj849.7 . . . . . . . 8  |-  ( ph'  <->  [. g  /  f ]. ph )
10 bnj849.8 . . . . . . . 8  |-  ( ps'  <->  [. g  /  f ]. ps )
118, 9, 10bnj873 28634 . . . . . . 7  |-  B  =  { g  |  E. n  e.  D  (
g  Fn  n  /\  ph' 
/\  ps' ) }
12 df-rex 2656 . . . . . . . . 9  |-  ( E. n  e.  D  ( g  Fn  n  /\  ph' 
/\  ps' )  <->  E. n
( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )
13 19.29 1603 . . . . . . . . . . 11  |-  ( ( A. n ( ch 
->  E. f  e.  w  th )  /\  E. n
( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  ->  E. n ( ( ch  ->  E. f  e.  w  th )  /\  ( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) ) )
14 an12 773 . . . . . . . . . . . . 13  |-  ( ( ( ch  ->  E. f  e.  w  th )  /\  ( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  <-> 
( n  e.  D  /\  ( ( ch  ->  E. f  e.  w  th )  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) ) )
15 df-3an 938 . . . . . . . . . . . . . . . 16  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  <->  ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D ) )
161anbi1i 677 . . . . . . . . . . . . . . . 16  |-  ( ( ta  /\  n  e.  D )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  n  e.  D ) )
1715, 5, 163bitr4i 269 . . . . . . . . . . . . . . 15  |-  ( ch  <->  ( ta  /\  n  e.  D ) )
18 id 20 . . . . . . . . . . . . . . . . 17  |-  ( ch 
->  ch )
19 bnj849.9 . . . . . . . . . . . . . . . . . . . 20  |-  ( th'  <->  [. g  / 
f ]. th )
206, 9, 10, 19bnj581 28618 . . . . . . . . . . . . . . . . . . . 20  |-  ( th'  <->  ( g  Fn  n  /\  ph'  /\  ps' ) )
2119, 20bitr3i 243 . . . . . . . . . . . . . . . . . . 19  |-  ( [. g  /  f ]. th  <->  ( g  Fn  n  /\  ph' 
/\  ps' ) )
222, 3, 4, 5, 6bnj864 28632 . . . . . . . . . . . . . . . . . . . 20  |-  ( ch 
->  E! f th )
23 df-rex 2656 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E. f  e.  w  th  <->  E. f ( f  e.  w  /\  th )
)
24 exancom 1593 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E. f ( f  e.  w  /\  th )  <->  E. f ( th  /\  f  e.  w )
)
2523, 24bitri 241 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E. f  e.  w  th  <->  E. f ( th  /\  f  e.  w )
)
2625biimpi 187 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. f  e.  w  th  ->  E. f ( th 
/\  f  e.  w
) )
27 nfeu1 2249 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ f E! f th
28 nfe1 1739 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ f E. f ( th 
/\  f  e.  w
)
2927, 28nfan 1836 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/ f ( E! f th 
/\  E. f ( th 
/\  f  e.  w
) )
30 nfsbc1v 3124 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ f
[. g  /  f ]. th
31 nfv 1626 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ f  g  e.  w
3230, 31nfim 1822 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/ f ( [. g  / 
f ]. th  ->  g  e.  w )
3329, 32nfim 1822 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ f ( ( E! f th  /\  E. f
( th  /\  f  e.  w ) )  -> 
( [. g  /  f ]. th  ->  g  e.  w ) )
34 sbceq1a 3115 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  =  g  ->  ( th 
<-> 
[. g  /  f ]. th ) )
35 elequ1 1720 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f  =  g  ->  (
f  e.  w  <->  g  e.  w ) )
3634, 35imbi12d 312 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  g  ->  (
( th  ->  f  e.  w )  <->  ( [. g  /  f ]. th  ->  g  e.  w ) ) )
3736imbi2d 308 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  g  ->  (
( ( E! f th  /\  E. f
( th  /\  f  e.  w ) )  -> 
( th  ->  f  e.  w ) )  <->  ( ( E! f th  /\  E. f ( th  /\  f  e.  w )
)  ->  ( [. g  /  f ]. th  ->  g  e.  w ) ) ) )
38 eupick 2302 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( E! f th  /\  E. f ( th  /\  f  e.  w )
)  ->  ( th  ->  f  e.  w ) )
3933, 37, 38chvar 2023 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E! f th  /\  E. f ( th  /\  f  e.  w )
)  ->  ( [. g  /  f ]. th  ->  g  e.  w ) )
4022, 26, 39syl2an 464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ch  /\  E. f  e.  w  th )  ->  ( [. g  / 
f ]. th  ->  g  e.  w ) )
4121, 40syl5bir 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ch  /\  E. f  e.  w  th )  ->  ( ( g  Fn  n  /\  ph'  /\  ps' )  -> 
g  e.  w ) )
4241ex 424 . . . . . . . . . . . . . . . . 17  |-  ( ch 
->  ( E. f  e.  w  th  ->  (
( g  Fn  n  /\  ph'  /\  ps' )  ->  g  e.  w ) ) )
4318, 42embantd 52 . . . . . . . . . . . . . . . 16  |-  ( ch 
->  ( ( ch  ->  E. f  e.  w  th )  ->  ( ( g  Fn  n  /\  ph'  /\  ps' )  -> 
g  e.  w ) ) )
4443imp3a 421 . . . . . . . . . . . . . . 15  |-  ( ch 
->  ( ( ( ch 
->  E. f  e.  w  th )  /\  (
g  Fn  n  /\  ph' 
/\  ps' ) )  -> 
g  e.  w ) )
4517, 44sylbir 205 . . . . . . . . . . . . . 14  |-  ( ( ta  /\  n  e.  D )  ->  (
( ( ch  ->  E. f  e.  w  th )  /\  ( g  Fn  n  /\  ph'  /\  ps' ) )  ->  g  e.  w
) )
4645expimpd 587 . . . . . . . . . . . . 13  |-  ( ta 
->  ( ( n  e.  D  /\  ( ( ch  ->  E. f  e.  w  th )  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  ->  g  e.  w
) )
4714, 46syl5bi 209 . . . . . . . . . . . 12  |-  ( ta 
->  ( ( ( ch 
->  E. f  e.  w  th )  /\  (
n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  ->  g  e.  w
) )
4847exlimdv 1643 . . . . . . . . . . 11  |-  ( ta 
->  ( E. n ( ( ch  ->  E. f  e.  w  th )  /\  ( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) ) )  ->  g  e.  w
) )
4913, 48syl5 30 . . . . . . . . . 10  |-  ( ta 
->  ( ( A. n
( ch  ->  E. f  e.  w  th )  /\  E. n ( n  e.  D  /\  (
g  Fn  n  /\  ph' 
/\  ps' ) ) )  ->  g  e.  w
) )
5049expdimp 427 . . . . . . . . 9  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  ( E. n ( n  e.  D  /\  ( g  Fn  n  /\  ph'  /\  ps' ) )  ->  g  e.  w
) )
5112, 50syl5bi 209 . . . . . . . 8  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  ( E. n  e.  D  (
g  Fn  n  /\  ph' 
/\  ps' )  ->  g  e.  w ) )
5251abssdv 3361 . . . . . . 7  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  { g  |  E. n  e.  D  ( g  Fn  n  /\  ph'  /\  ps' ) }  C_  w )
5311, 52syl5eqss 3336 . . . . . 6  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  B  C_  w
)
54 vex 2903 . . . . . . 7  |-  w  e. 
_V
5554ssex 4289 . . . . . 6  |-  ( B 
C_  w  ->  B  e.  _V )
5653, 55syl 16 . . . . 5  |-  ( ( ta  /\  A. n
( ch  ->  E. f  e.  w  th )
)  ->  B  e.  _V )
5756ex 424 . . . 4  |-  ( ta 
->  ( A. n ( ch  ->  E. f  e.  w  th )  ->  B  e.  _V )
)
5857exlimdv 1643 . . 3  |-  ( ta 
->  ( E. w A. n ( ch  ->  E. f  e.  w  th )  ->  B  e.  _V ) )
597, 58mpi 17 . 2  |-  ( ta 
->  B  e.  _V )
601, 59sylbir 205 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1717   E!weu 2239   {cab 2374   A.wral 2650   E.wrex 2651   _Vcvv 2900   [.wsbc 3105    \ cdif 3261    C_ wss 3264   (/)c0 3572   {csn 3758   U_ciun 4036   suc csuc 4525   omcom 4786    Fn wfn 5390   ` cfv 5395    predc-bnj14 28391    FrSe w-bnj15 28395
This theorem is referenced by:  bnj893  28638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-reg 7494  ax-inf2 7530
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-1o 6661  df-bnj17 28390  df-bnj14 28392  df-bnj13 28394  df-bnj15 28396
  Copyright terms: Public domain W3C validator