Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj882 Unicode version

Theorem bnj882 29274
Description: Definition (using hypotheses for readability) of the function giving the transitive closure of  X in  A by  R. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj882.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj882.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj882.3  |-  D  =  ( om  \  { (/)
} )
bnj882.4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
Assertion
Ref Expression
bnj882  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  B  U_ i  e.  dom  f ( f `
 i )
Distinct variable groups:    A, f,
i, n, y    R, f, i, n, y    f, X, i, n, y
Allowed substitution hints:    ph( y, f, i, n)    ps( y,
f, i, n)    B( y, f, i, n)    D( y, f, i, n)

Proof of Theorem bnj882
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-bnj18 29036 . 2  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
2 df-iun 3923 . . 3  |-  U_ f  e.  B  U_ i  e. 
dom  f ( f `
 i )  =  { w  |  E. f  e.  B  w  e.  U_ i  e.  dom  f ( f `  i ) }
3 df-iun 3923 . . . 4  |-  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  =  { w  |  E. f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
4 bnj882.4 . . . . . . . . 9  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
5 bnj882.1 . . . . . . . . . . . . . . 15  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
6 bnj882.2 . . . . . . . . . . . . . . 15  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
75, 6anbi12i 678 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  <->  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
87anbi2i 675 . . . . . . . . . . . . 13  |-  ( ( f  Fn  n  /\  ( ph  /\  ps )
)  <->  ( f  Fn  n  /\  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) ) )
9 3anass 938 . . . . . . . . . . . . 13  |-  ( ( f  Fn  n  /\  ph 
/\  ps )  <->  ( f  Fn  n  /\  ( ph  /\  ps ) ) )
10 3anass 938 . . . . . . . . . . . . 13  |-  ( ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <-> 
( f  Fn  n  /\  ( ( f `  (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) ) )
118, 9, 103bitr4i 268 . . . . . . . . . . . 12  |-  ( ( f  Fn  n  /\  ph 
/\  ps )  <->  ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1211rexbii 2581 . . . . . . . . . . 11  |-  ( E. n  e.  D  ( f  Fn  n  /\  ph 
/\  ps )  <->  E. n  e.  D  ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
13 bnj882.3 . . . . . . . . . . . . . 14  |-  D  =  ( om  \  { (/)
} )
1413eleq2i 2360 . . . . . . . . . . . . 13  |-  ( n  e.  D  <->  n  e.  ( om  \  { (/) } ) )
1514anbi1i 676 . . . . . . . . . . . 12  |-  ( ( n  e.  D  /\  ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )  <->  ( n  e.  ( om  \  { (/)
} )  /\  (
f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) ) )
1615rexbii2 2585 . . . . . . . . . . 11  |-  ( E. n  e.  D  ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <->  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1712, 16bitri 240 . . . . . . . . . 10  |-  ( E. n  e.  D  ( f  Fn  n  /\  ph 
/\  ps )  <->  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1817abbii 2408 . . . . . . . . 9  |-  { f  |  E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps ) }  =  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
194, 18eqtri 2316 . . . . . . . 8  |-  B  =  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
2019eleq2i 2360 . . . . . . 7  |-  ( f  e.  B  <->  f  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } )
2120anbi1i 676 . . . . . 6  |-  ( ( f  e.  B  /\  w  e.  U_ i  e. 
dom  f ( f `
 i ) )  <-> 
( f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  /\  w  e. 
U_ i  e.  dom  f ( f `  i ) ) )
2221rexbii2 2585 . . . . 5  |-  ( E. f  e.  B  w  e.  U_ i  e. 
dom  f ( f `
 i )  <->  E. f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) )
2322abbii 2408 . . . 4  |-  { w  |  E. f  e.  B  w  e.  U_ i  e. 
dom  f ( f `
 i ) }  =  { w  |  E. f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
243, 23eqtr4i 2319 . . 3  |-  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  =  { w  |  E. f  e.  B  w  e.  U_ i  e.  dom  f ( f `  i ) }
252, 24eqtr4i 2319 . 2  |-  U_ f  e.  B  U_ i  e. 
dom  f ( f `
 i )  = 
U_ f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
261, 25eqtr4i 2319 1  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  B  U_ i  e.  dom  f ( f `
 i )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557    \ cdif 3162   (/)c0 3468   {csn 3653   U_ciun 3921   suc csuc 4410   omcom 4672   dom cdm 4705    Fn wfn 5266   ` cfv 5271    predc-bnj14 29029    trClc-bnj18 29035
This theorem is referenced by:  bnj893  29276  bnj906  29278  bnj916  29281  bnj983  29299  bnj1014  29308  bnj1145  29339  bnj1318  29371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-rex 2562  df-iun 3923  df-bnj18 29036
  Copyright terms: Public domain W3C validator