Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj893 Unicode version

Theorem bnj893 29276
Description: Property of  trCl. Under certain conditions, the transitive closure of  X in  A by  R is a set. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj893  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )

Proof of Theorem bnj893
Dummy variables  f 
g  i  n  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 227 . . 3  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 biid 227 . . 3  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
3 eqid 2296 . . 3  |-  ( om 
\  { (/) } )  =  ( om  \  { (/)
} )
4 eqid 2296 . . 3  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
51, 2, 3, 4bnj882 29274 . 2  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
6 vex 2804 . . . . . . . . . . 11  |-  g  e. 
_V
7 fveq1 5540 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f `  (/) )  =  ( g `  (/) ) )
87eqeq1d 2304 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( g `  (/) )  = 
pred ( X ,  A ,  R )
) )
96, 8sbcie 3038 . . . . . . . . . 10  |-  ( [. g  /  f ]. (
f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( g `  (/) )  = 
pred ( X ,  A ,  R )
)
109bicomi 193 . . . . . . . . 9  |-  ( ( g `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. g  /  f ]. ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
11 fveq1 5540 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  (
f `  suc  i )  =  ( g `  suc  i ) )
12 fveq1 5540 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  (
f `  i )  =  ( g `  i ) )
1312bnj1113 29133 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) )
1411, 13eqeq12d 2310 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  <->  ( g `  suc  i )  = 
U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
1514imbi2d 307 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  ( suc  i  e.  n  ->  ( g `  suc  i
)  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) ) ) )
1615ralbidv 2576 . . . . . . . . . . 11  |-  ( f  =  g  ->  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) ) )
176, 16sbcie 3038 . . . . . . . . . 10  |-  ( [. g  /  f ]. A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
1817bicomi 193 . . . . . . . . 9  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) )  <->  [. g  / 
f ]. A. i  e. 
om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
194, 10, 18bnj873 29272 . . . . . . . 8  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }
2019eleq2i 2360 . . . . . . 7  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  <->  f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } )
2120anbi1i 676 . . . . . 6  |-  ( ( f  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  /\  w  e. 
U_ i  e.  dom  f ( f `  i ) )  <->  ( f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  /\  w  e. 
U_ i  e.  dom  f ( f `  i ) ) )
2221rexbii2 2585 . . . . 5  |-  ( E. f  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i )  <->  E. f  e.  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) )
2322abbii 2408 . . . 4  |-  { w  |  E. f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }  =  { w  |  E. f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
24 df-iun 3923 . . . 4  |-  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  =  { w  |  E. f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
25 df-iun 3923 . . . 4  |-  U_ f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  =  { w  |  E. f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
2623, 24, 253eqtr4i 2326 . . 3  |-  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  = 
U_ f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
27 biid 227 . . . . 5  |-  ( ( g `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( g `  (/) )  = 
pred ( X ,  A ,  R )
)
28 biid 227 . . . . 5  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
29 eqid 2296 . . . . 5  |-  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  =  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }
30 biid 227 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  ( om  \  { (/) } ) )  <-> 
( R  FrSe  A  /\  X  e.  A  /\  n  e.  ( om  \  { (/) } ) ) )
31 biid 227 . . . . 5  |-  ( ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )  <-> 
( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) )
32 biid 227 . . . . 5  |-  ( [. z  /  g ]. (
g `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. z  /  g ]. ( g `  (/) )  = 
pred ( X ,  A ,  R )
)
33 biid 227 . . . . 5  |-  ( [. z  /  g ]. A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) )  <->  [. z  / 
g ]. A. i  e. 
om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
34 biid 227 . . . . 5  |-  ( [. z  /  g ]. (
g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )  <->  [. z  /  g ]. ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) )
35 biid 227 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A )  <->  ( R  FrSe  A  /\  X  e.  A )
)
3627, 28, 3, 29, 30, 31, 32, 33, 34, 35bnj849 29273 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  e.  _V )
37 vex 2804 . . . . . . 7  |-  f  e. 
_V
3837dmex 4957 . . . . . 6  |-  dom  f  e.  _V
39 fvex 5555 . . . . . 6  |-  ( f `
 i )  e. 
_V
4038, 39iunex 5786 . . . . 5  |-  U_ i  e.  dom  f ( f `
 i )  e. 
_V
4140rgenw 2623 . . . 4  |-  A. f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V
42 iunexg 5783 . . . 4  |-  ( ( { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  e.  _V  /\  A. f  e.  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )  ->  U_ f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )
4336, 41, 42sylancl 643 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  U_ f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )
4426, 43syl5eqel 2380 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  U_ f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )
455, 44syl5eqel 2380 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   _Vcvv 2801   [.wsbc 3004    \ cdif 3162   (/)c0 3468   {csn 3653   U_ciun 3921   suc csuc 4410   omcom 4672   dom cdm 4705    Fn wfn 5266   ` cfv 5271    predc-bnj14 29029    FrSe w-bnj15 29033    trClc-bnj18 29035
This theorem is referenced by:  bnj1125  29338  bnj1136  29343  bnj1177  29352  bnj1413  29381  bnj1452  29398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6495  df-bnj17 29028  df-bnj14 29030  df-bnj13 29032  df-bnj15 29034  df-bnj18 29036
  Copyright terms: Public domain W3C validator