Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj893 Unicode version

Theorem bnj893 28960
Description: Property of  trCl. Under certain conditions, the transitive closure of  X in  A by  R is a set. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj893  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )

Proof of Theorem bnj893
Dummy variables  f 
g  i  n  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 227 . . 3  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 biid 227 . . 3  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
3 eqid 2283 . . 3  |-  ( om 
\  { (/) } )  =  ( om  \  { (/)
} )
4 eqid 2283 . . 3  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
51, 2, 3, 4bnj882 28958 . 2  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
6 vex 2791 . . . . . . . . . . 11  |-  g  e. 
_V
7 fveq1 5524 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f `  (/) )  =  ( g `  (/) ) )
87eqeq1d 2291 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( g `  (/) )  = 
pred ( X ,  A ,  R )
) )
96, 8sbcie 3025 . . . . . . . . . 10  |-  ( [. g  /  f ]. (
f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( g `  (/) )  = 
pred ( X ,  A ,  R )
)
109bicomi 193 . . . . . . . . 9  |-  ( ( g `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. g  /  f ]. ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
11 fveq1 5524 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  (
f `  suc  i )  =  ( g `  suc  i ) )
12 fveq1 5524 . . . . . . . . . . . . . . 15  |-  ( f  =  g  ->  (
f `  i )  =  ( g `  i ) )
1312bnj1113 28817 . . . . . . . . . . . . . 14  |-  ( f  =  g  ->  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R )  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) )
1411, 13eqeq12d 2297 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )  <->  ( g `  suc  i )  = 
U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
1514imbi2d 307 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  ( suc  i  e.  n  ->  ( g `  suc  i
)  =  U_ y  e.  ( g `  i
)  pred ( y ,  A ,  R ) ) ) )
1615ralbidv 2563 . . . . . . . . . . 11  |-  ( f  =  g  ->  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) ) )
176, 16sbcie 3025 . . . . . . . . . 10  |-  ( [. g  /  f ]. A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
1817bicomi 193 . . . . . . . . 9  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) )  <->  [. g  / 
f ]. A. i  e. 
om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
194, 10, 18bnj873 28956 . . . . . . . 8  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }
2019eleq2i 2347 . . . . . . 7  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  <->  f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } )
2120anbi1i 676 . . . . . 6  |-  ( ( f  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  /\  w  e. 
U_ i  e.  dom  f ( f `  i ) )  <->  ( f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  /\  w  e. 
U_ i  e.  dom  f ( f `  i ) ) )
2221rexbii2 2572 . . . . 5  |-  ( E. f  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i )  <->  E. f  e.  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) )
2322abbii 2395 . . . 4  |-  { w  |  E. f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }  =  { w  |  E. f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
24 df-iun 3907 . . . 4  |-  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  =  { w  |  E. f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
25 df-iun 3907 . . . 4  |-  U_ f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  =  { w  |  E. f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } w  e.  U_ i  e.  dom  f ( f `  i ) }
2623, 24, 253eqtr4i 2313 . . 3  |-  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  = 
U_ f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
27 biid 227 . . . . 5  |-  ( ( g `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( g `  (/) )  = 
pred ( X ,  A ,  R )
)
28 biid 227 . . . . 5  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
29 eqid 2283 . . . . 5  |-  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  =  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }
30 biid 227 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  ( om  \  { (/) } ) )  <-> 
( R  FrSe  A  /\  X  e.  A  /\  n  e.  ( om  \  { (/) } ) ) )
31 biid 227 . . . . 5  |-  ( ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )  <-> 
( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) )
32 biid 227 . . . . 5  |-  ( [. z  /  g ]. (
g `  (/) )  = 
pred ( X ,  A ,  R )  <->  [. z  /  g ]. ( g `  (/) )  = 
pred ( X ,  A ,  R )
)
33 biid 227 . . . . 5  |-  ( [. z  /  g ]. A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) )  <->  [. z  / 
g ]. A. i  e. 
om  ( suc  i  e.  n  ->  ( g `
 suc  i )  =  U_ y  e.  ( g `  i ) 
pred ( y ,  A ,  R ) ) )
34 biid 227 . . . . 5  |-  ( [. z  /  g ]. (
g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) )  <->  [. z  /  g ]. ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) )
35 biid 227 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A )  <->  ( R  FrSe  A  /\  X  e.  A )
)
3627, 28, 3, 29, 30, 31, 32, 33, 34, 35bnj849 28957 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  e.  _V )
37 vex 2791 . . . . . . 7  |-  f  e. 
_V
3837dmex 4941 . . . . . 6  |-  dom  f  e.  _V
39 fvex 5539 . . . . . 6  |-  ( f `
 i )  e. 
_V
4038, 39iunex 5770 . . . . 5  |-  U_ i  e.  dom  f ( f `
 i )  e. 
_V
4140rgenw 2610 . . . 4  |-  A. f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V
42 iunexg 5767 . . . 4  |-  ( ( { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) }  e.  _V  /\  A. f  e.  { g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )  ->  U_ f  e.  { g  |  E. n  e.  ( om  \  { (/) } ) ( g  Fn  n  /\  ( g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )
4336, 41, 42sylancl 643 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  U_ f  e.  {
g  |  E. n  e.  ( om  \  { (/)
} ) ( g  Fn  n  /\  (
g `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( g `  suc  i )  =  U_ y  e.  ( g `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )
4426, 43syl5eqel 2367 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  U_ f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )  e. 
_V )
455, 44syl5eqel 2367 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788   [.wsbc 2991    \ cdif 3149   (/)c0 3455   {csn 3640   U_ciun 3905   suc csuc 4394   omcom 4656   dom cdm 4689    Fn wfn 5250   ` cfv 5255    predc-bnj14 28713    FrSe w-bnj15 28717    trClc-bnj18 28719
This theorem is referenced by:  bnj1125  29022  bnj1136  29027  bnj1177  29036  bnj1413  29065  bnj1452  29082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-bnj17 28712  df-bnj14 28714  df-bnj13 28716  df-bnj15 28718  df-bnj18 28720
  Copyright terms: Public domain W3C validator