Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj919 Unicode version

Theorem bnj919 28797
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj919.1  |-  ( ch  <->  ( n  e.  D  /\  F  Fn  n  /\  ph 
/\  ps ) )
bnj919.2  |-  ( ph'  <->  [. P  /  n ]. ph )
bnj919.3  |-  ( ps'  <->  [. P  /  n ]. ps )
bnj919.4  |-  ( ch'  <->  [. P  /  n ]. ch )
bnj919.5  |-  P  e. 
_V
Assertion
Ref Expression
bnj919  |-  ( ch'  <->  ( P  e.  D  /\  F  Fn  P  /\  ph' 
/\  ps' ) )
Distinct variable groups:    D, n    n, F    P, n
Allowed substitution hints:    ph( n)    ps( n)    ch( n)    ph'( n)    ps'( n)    ch'( n)

Proof of Theorem bnj919
StepHypRef Expression
1 bnj919.4 . 2  |-  ( ch'  <->  [. P  /  n ]. ch )
2 bnj919.1 . . 3  |-  ( ch  <->  ( n  e.  D  /\  F  Fn  n  /\  ph 
/\  ps ) )
3 bnj919.5 . . 3  |-  P  e. 
_V
42, 3bnj524 28766 . 2  |-  ( [. P  /  n ]. ch  <->  [. P  /  n ]. ( n  e.  D  /\  F  Fn  n  /\  ph  /\  ps )
)
5 df-bnj17 28712 . . . . 5  |-  ( ( P  e.  D  /\  F  Fn  P  /\  ph' 
/\  ps' )  <->  ( ( P  e.  D  /\  F  Fn  P  /\  ph' )  /\  ps' ) )
6 nfv 1605 . . . . . . 7  |-  F/ n  P  e.  D
7 nfv 1605 . . . . . . 7  |-  F/ n  F  Fn  P
8 bnj919.2 . . . . . . . 8  |-  ( ph'  <->  [. P  /  n ]. ph )
9 nfsbc1v 3010 . . . . . . . 8  |-  F/ n [. P  /  n ]. ph
108, 9nfxfr 1557 . . . . . . 7  |-  F/ n ph'
116, 7, 10nf3an 1774 . . . . . 6  |-  F/ n
( P  e.  D  /\  F  Fn  P  /\  ph' )
12 bnj919.3 . . . . . . 7  |-  ( ps'  <->  [. P  /  n ]. ps )
13 nfsbc1v 3010 . . . . . . 7  |-  F/ n [. P  /  n ]. ps
1412, 13nfxfr 1557 . . . . . 6  |-  F/ n ps'
1511, 14nfan 1771 . . . . 5  |-  F/ n
( ( P  e.  D  /\  F  Fn  P  /\  ph' )  /\  ps' )
165, 15nfxfr 1557 . . . 4  |-  F/ n
( P  e.  D  /\  F  Fn  P  /\  ph'  /\  ps' )
17 eleq1 2343 . . . . . 6  |-  ( n  =  P  ->  (
n  e.  D  <->  P  e.  D ) )
18 fneq2 5334 . . . . . . 7  |-  ( n  =  P  ->  ( F  Fn  n  <->  F  Fn  P ) )
19 sbceq1a 3001 . . . . . . . 8  |-  ( n  =  P  ->  ( ph 
<-> 
[. P  /  n ]. ph ) )
2019, 8syl6bbr 254 . . . . . . 7  |-  ( n  =  P  ->  ( ph 
<->  ph' ) )
21 sbceq1a 3001 . . . . . . . 8  |-  ( n  =  P  ->  ( ps 
<-> 
[. P  /  n ]. ps ) )
2221, 12syl6bbr 254 . . . . . . 7  |-  ( n  =  P  ->  ( ps 
<->  ps' ) )
2318, 20, 223anbi123d 1252 . . . . . 6  |-  ( n  =  P  ->  (
( F  Fn  n  /\  ph  /\  ps )  <->  ( F  Fn  P  /\  ph' 
/\  ps' ) ) )
2417, 23anbi12d 691 . . . . 5  |-  ( n  =  P  ->  (
( n  e.  D  /\  ( F  Fn  n  /\  ph  /\  ps )
)  <->  ( P  e.  D  /\  ( F  Fn  P  /\  ph'  /\  ps' ) ) ) )
25 bnj252 28728 . . . . 5  |-  ( ( n  e.  D  /\  F  Fn  n  /\  ph 
/\  ps )  <->  ( n  e.  D  /\  ( F  Fn  n  /\  ph 
/\  ps ) ) )
26 bnj252 28728 . . . . 5  |-  ( ( P  e.  D  /\  F  Fn  P  /\  ph' 
/\  ps' )  <->  ( P  e.  D  /\  ( F  Fn  P  /\  ph' 
/\  ps' ) ) )
2724, 25, 263bitr4g 279 . . . 4  |-  ( n  =  P  ->  (
( n  e.  D  /\  F  Fn  n  /\  ph  /\  ps )  <->  ( P  e.  D  /\  F  Fn  P  /\  ph' 
/\  ps' ) ) )
2816, 27sbciegf 3022 . . 3  |-  ( P  e.  _V  ->  ( [. P  /  n ]. ( n  e.  D  /\  F  Fn  n  /\  ph  /\  ps )  <->  ( P  e.  D  /\  F  Fn  P  /\  ph' 
/\  ps' ) ) )
293, 28ax-mp 8 . 2  |-  ( [. P  /  n ]. (
n  e.  D  /\  F  Fn  n  /\  ph 
/\  ps )  <->  ( P  e.  D  /\  F  Fn  P  /\  ph'  /\  ps' ) )
301, 4, 293bitri 262 1  |-  ( ch'  <->  ( P  e.  D  /\  F  Fn  P  /\  ph' 
/\  ps' ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788   [.wsbc 2991    Fn wfn 5250    /\ w-bnj17 28711
This theorem is referenced by:  bnj910  28980  bnj999  28989  bnj907  28997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-sbc 2992  df-fn 5258  df-bnj17 28712
  Copyright terms: Public domain W3C validator