Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj927 Unicode version

Theorem bnj927 29116
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj927.1  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj927.2  |-  C  e. 
_V
Assertion
Ref Expression
bnj927  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p )

Proof of Theorem bnj927
StepHypRef Expression
1 simpr 447 . . . 4  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  f  Fn  n )
2 vex 2804 . . . . . 6  |-  n  e. 
_V
3 bnj927.2 . . . . . 6  |-  C  e. 
_V
42, 3fnsn 5320 . . . . 5  |-  { <. n ,  C >. }  Fn  { n }
54a1i 10 . . . 4  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  { <. n ,  C >. }  Fn  {
n } )
6 bnj521 29081 . . . . 5  |-  ( n  i^i  { n }
)  =  (/)
76a1i 10 . . . 4  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  ( n  i^i  { n } )  =  (/) )
8 fnun 5366 . . . 4  |-  ( ( ( f  Fn  n  /\  { <. n ,  C >. }  Fn  { n } )  /\  (
n  i^i  { n } )  =  (/) )  ->  ( f  u. 
{ <. n ,  C >. } )  Fn  (
n  u.  { n } ) )
91, 5, 7, 8syl21anc 1181 . . 3  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  ( f  u.  { <. n ,  C >. } )  Fn  (
n  u.  { n } ) )
10 bnj927.1 . . . 4  |-  G  =  ( f  u.  { <. n ,  C >. } )
1110fneq1i 5354 . . 3  |-  ( G  Fn  ( n  u. 
{ n } )  <-> 
( f  u.  { <. n ,  C >. } )  Fn  ( n  u.  { n }
) )
129, 11sylibr 203 . 2  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  ( n  u.  { n } ) )
13 df-suc 4414 . . . . . 6  |-  suc  n  =  ( n  u. 
{ n } )
1413eqeq2i 2306 . . . . 5  |-  ( p  =  suc  n  <->  p  =  ( n  u.  { n } ) )
1514biimpi 186 . . . 4  |-  ( p  =  suc  n  ->  p  =  ( n  u.  { n } ) )
1615adantr 451 . . 3  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  p  =  ( n  u.  { n } ) )
1716fneq2d 5352 . 2  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  ( G  Fn  p  <->  G  Fn  (
n  u.  { n } ) ) )
1812, 17mpbird 223 1  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163    i^i cin 3164   (/)c0 3468   {csn 3653   <.cop 3656   suc csuc 4410    Fn wfn 5266
This theorem is referenced by:  bnj941  29120  bnj929  29284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-reg 7322
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-fun 5273  df-fn 5274
  Copyright terms: Public domain W3C validator