Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj929 Unicode version

Theorem bnj929 29284
Description: Technical lemma for bnj69 29356. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj929.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj929.4  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj929.7  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj929.10  |-  D  =  ( om  \  { (/)
} )
bnj929.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj929.50  |-  C  e. 
_V
Assertion
Ref Expression
bnj929  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph" )
Distinct variable groups:    A, f, n    R, f, n    f, X, n
Allowed substitution hints:    ph( f, n, p)    A( p)    C( f, n, p)    D( f, n, p)    R( p)    G( f, n, p)    X( p)    ph'( f, n, p)   
ph"( f, n, p)

Proof of Theorem bnj929
StepHypRef Expression
1 bnj645 29095 . 2  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph )
2 bnj334 29054 . . . . . . 7  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( f  Fn  n  /\  n  e.  D  /\  p  =  suc  n  /\  ph ) )
3 bnj257 29048 . . . . . . 7  |-  ( ( f  Fn  n  /\  n  e.  D  /\  p  =  suc  n  /\  ph )  <->  ( f  Fn  n  /\  n  e.  D  /\  ph  /\  p  =  suc  n ) )
42, 3bitri 240 . . . . . 6  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( f  Fn  n  /\  n  e.  D  /\  ph  /\  p  =  suc  n ) )
5 bnj345 29055 . . . . . 6  |-  ( ( f  Fn  n  /\  n  e.  D  /\  ph 
/\  p  =  suc  n )  <->  ( p  =  suc  n  /\  f  Fn  n  /\  n  e.  D  /\  ph )
)
6 bnj253 29045 . . . . . 6  |-  ( ( p  =  suc  n  /\  f  Fn  n  /\  n  e.  D  /\  ph )  <->  ( (
p  =  suc  n  /\  f  Fn  n
)  /\  n  e.  D  /\  ph ) )
74, 5, 63bitri 262 . . . . 5  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( ( p  =  suc  n  /\  f  Fn  n )  /\  n  e.  D  /\  ph ) )
87simp1bi 970 . . . 4  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ( p  =  suc  n  /\  f  Fn  n ) )
9 bnj929.13 . . . . . 6  |-  G  =  ( f  u.  { <. n ,  C >. } )
10 bnj929.50 . . . . . 6  |-  C  e. 
_V
119, 10bnj927 29116 . . . . 5  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p )
1211bnj930 29117 . . . 4  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  Fun  G )
138, 12syl 15 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  Fun  G )
149bnj931 29118 . . . 4  |-  f  C_  G
1514a1i 10 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  f  C_  G )
16 bnj268 29050 . . . . . 6  |-  ( ( n  e.  D  /\  f  Fn  n  /\  p  =  suc  n  /\  ph )  <->  ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )
)
17 bnj253 29045 . . . . . 6  |-  ( ( n  e.  D  /\  f  Fn  n  /\  p  =  suc  n  /\  ph )  <->  ( ( n  e.  D  /\  f  Fn  n )  /\  p  =  suc  n  /\  ph ) )
1816, 17bitr3i 242 . . . . 5  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( ( n  e.  D  /\  f  Fn  n )  /\  p  =  suc  n  /\  ph ) )
1918simp1bi 970 . . . 4  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ( n  e.  D  /\  f  Fn  n ) )
20 fndm 5359 . . . . 5  |-  ( f  Fn  n  ->  dom  f  =  n )
21 bnj929.10 . . . . . 6  |-  D  =  ( om  \  { (/)
} )
2221bnj529 29086 . . . . 5  |-  ( n  e.  D  ->  (/)  e.  n
)
23 eleq2 2357 . . . . . 6  |-  ( dom  f  =  n  -> 
( (/)  e.  dom  f  <->  (/)  e.  n ) )
2423biimpar 471 . . . . 5  |-  ( ( dom  f  =  n  /\  (/)  e.  n )  ->  (/)  e.  dom  f
)
2520, 22, 24syl2anr 464 . . . 4  |-  ( ( n  e.  D  /\  f  Fn  n )  -> 
(/)  e.  dom  f )
2619, 25syl 15 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  (/)  e.  dom  f )
2713, 15, 26bnj1502 29196 . 2  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ( G `  (/) )  =  ( f `  (/) ) )
28 bnj929.1 . . 3  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
29 bnj929.4 . . 3  |-  ( ph'  <->  [. p  /  n ]. ph )
30 bnj929.7 . . 3  |-  ( ph"  <->  [. G  / 
f ]. ph' )
319bnj918 29112 . . 3  |-  G  e. 
_V
3228, 29, 30, 31bnj934 29283 . 2  |-  ( (
ph  /\  ( G `  (/) )  =  ( f `  (/) ) )  ->  ph" )
331, 27, 32syl2anc 642 1  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph" )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801   [.wsbc 3004    \ cdif 3162    u. cun 3163    C_ wss 3165   (/)c0 3468   {csn 3653   <.cop 3656   suc csuc 4410   omcom 4672   dom cdm 4705   Fun wfun 5265    Fn wfn 5266   ` cfv 5271    /\ w-bnj17 29027    predc-bnj14 29029
This theorem is referenced by:  bnj944  29286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528  ax-reg 7322
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279  df-bnj17 29028
  Copyright terms: Public domain W3C validator