Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj929 Structured version   Unicode version

Theorem bnj929 29208
Description: Technical lemma for bnj69 29280. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj929.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj929.4  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj929.7  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj929.10  |-  D  =  ( om  \  { (/)
} )
bnj929.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj929.50  |-  C  e. 
_V
Assertion
Ref Expression
bnj929  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph" )
Distinct variable groups:    A, f, n    R, f, n    f, X, n
Allowed substitution hints:    ph( f, n, p)    A( p)    C( f, n, p)    D( f, n, p)    R( p)    G( f, n, p)    X( p)    ph'( f, n, p)   
ph"( f, n, p)

Proof of Theorem bnj929
StepHypRef Expression
1 bnj645 29019 . 2  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph )
2 bnj334 28978 . . . . . . 7  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( f  Fn  n  /\  n  e.  D  /\  p  =  suc  n  /\  ph ) )
3 bnj257 28972 . . . . . . 7  |-  ( ( f  Fn  n  /\  n  e.  D  /\  p  =  suc  n  /\  ph )  <->  ( f  Fn  n  /\  n  e.  D  /\  ph  /\  p  =  suc  n ) )
42, 3bitri 241 . . . . . 6  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( f  Fn  n  /\  n  e.  D  /\  ph  /\  p  =  suc  n ) )
5 bnj345 28979 . . . . . 6  |-  ( ( f  Fn  n  /\  n  e.  D  /\  ph 
/\  p  =  suc  n )  <->  ( p  =  suc  n  /\  f  Fn  n  /\  n  e.  D  /\  ph )
)
6 bnj253 28969 . . . . . 6  |-  ( ( p  =  suc  n  /\  f  Fn  n  /\  n  e.  D  /\  ph )  <->  ( (
p  =  suc  n  /\  f  Fn  n
)  /\  n  e.  D  /\  ph ) )
74, 5, 63bitri 263 . . . . 5  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( ( p  =  suc  n  /\  f  Fn  n )  /\  n  e.  D  /\  ph ) )
87simp1bi 972 . . . 4  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ( p  =  suc  n  /\  f  Fn  n ) )
9 bnj929.13 . . . . . 6  |-  G  =  ( f  u.  { <. n ,  C >. } )
10 bnj929.50 . . . . . 6  |-  C  e. 
_V
119, 10bnj927 29040 . . . . 5  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p )
1211bnj930 29041 . . . 4  |-  ( ( p  =  suc  n  /\  f  Fn  n
)  ->  Fun  G )
138, 12syl 16 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  Fun  G )
149bnj931 29042 . . . 4  |-  f  C_  G
1514a1i 11 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  f  C_  G )
16 bnj268 28974 . . . . . 6  |-  ( ( n  e.  D  /\  f  Fn  n  /\  p  =  suc  n  /\  ph )  <->  ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )
)
17 bnj253 28969 . . . . . 6  |-  ( ( n  e.  D  /\  f  Fn  n  /\  p  =  suc  n  /\  ph )  <->  ( ( n  e.  D  /\  f  Fn  n )  /\  p  =  suc  n  /\  ph ) )
1816, 17bitr3i 243 . . . . 5  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( ( n  e.  D  /\  f  Fn  n )  /\  p  =  suc  n  /\  ph ) )
1918simp1bi 972 . . . 4  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ( n  e.  D  /\  f  Fn  n ) )
20 fndm 5536 . . . . 5  |-  ( f  Fn  n  ->  dom  f  =  n )
21 bnj929.10 . . . . . 6  |-  D  =  ( om  \  { (/)
} )
2221bnj529 29010 . . . . 5  |-  ( n  e.  D  ->  (/)  e.  n
)
23 eleq2 2496 . . . . . 6  |-  ( dom  f  =  n  -> 
( (/)  e.  dom  f  <->  (/)  e.  n ) )
2423biimpar 472 . . . . 5  |-  ( ( dom  f  =  n  /\  (/)  e.  n )  ->  (/)  e.  dom  f
)
2520, 22, 24syl2anr 465 . . . 4  |-  ( ( n  e.  D  /\  f  Fn  n )  -> 
(/)  e.  dom  f )
2619, 25syl 16 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  (/)  e.  dom  f )
2713, 15, 26bnj1502 29120 . 2  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ( G `  (/) )  =  ( f `  (/) ) )
28 bnj929.1 . . 3  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
29 bnj929.4 . . 3  |-  ( ph'  <->  [. p  /  n ]. ph )
30 bnj929.7 . . 3  |-  ( ph"  <->  [. G  / 
f ]. ph' )
319bnj918 29036 . . 3  |-  G  e. 
_V
3228, 29, 30, 31bnj934 29207 . 2  |-  ( (
ph  /\  ( G `  (/) )  =  ( f `  (/) ) )  ->  ph" )
331, 27, 32syl2anc 643 1  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph" )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2948   [.wsbc 3153    \ cdif 3309    u. cun 3310    C_ wss 3312   (/)c0 3620   {csn 3806   <.cop 3809   suc csuc 4575   omcom 4837   dom cdm 4870   Fun wfun 5440    Fn wfn 5441   ` cfv 5446    /\ w-bnj17 28951    predc-bnj14 28953
This theorem is referenced by:  bnj944  29210
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693  ax-reg 7550
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-res 4882  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454  df-bnj17 28952
  Copyright terms: Public domain W3C validator