Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj93 Structured version   Unicode version

Theorem bnj93 29296
Description: Technical lemma for bnj97 29299. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj93  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  pred ( x ,  A ,  R )  e.  _V )
Distinct variable groups:    x, A    x, R

Proof of Theorem bnj93
StepHypRef Expression
1 df-bnj15 29119 . . . 4  |-  ( R 
FrSe  A  <->  ( R  Fr  A  /\  R  Se  A
) )
21simprbi 452 . . 3  |-  ( R 
FrSe  A  ->  R  Se  A )
3 df-bnj13 29117 . . 3  |-  ( R  Se  A  <->  A. x  e.  A  pred ( x ,  A ,  R
)  e.  _V )
42, 3sylib 190 . 2  |-  ( R 
FrSe  A  ->  A. x  e.  A  pred ( x ,  A ,  R
)  e.  _V )
54r19.21bi 2806 1  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  pred ( x ,  A ,  R )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    e. wcel 1726   A.wral 2707   _Vcvv 2958    Fr wfr 4540    predc-bnj14 29114    Se w-bnj13 29116    FrSe w-bnj15 29118
This theorem is referenced by:  bnj96  29298  bnj97  29299  bnj149  29308  bnj150  29309  bnj518  29319  bnj1148  29427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-ral 2712  df-bnj13 29117  df-bnj15 29119
  Copyright terms: Public domain W3C validator