Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj930 Unicode version

Theorem bnj930 28801
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj930.1  |-  ( ph  ->  F  Fn  A )
Assertion
Ref Expression
bnj930  |-  ( ph  ->  Fun  F )

Proof of Theorem bnj930
StepHypRef Expression
1 bnj930.1 . 2  |-  ( ph  ->  F  Fn  A )
2 fnfun 5341 . 2  |-  ( F  Fn  A  ->  Fun  F )
31, 2syl 15 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4   Fun wfun 5249    Fn wfn 5250
This theorem is referenced by:  bnj945  28805  bnj545  28927  bnj548  28929  bnj553  28930  bnj570  28937  bnj929  28968  bnj966  28976  bnj1442  29079  bnj1450  29080  bnj1501  29097
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-fn 5258
  Copyright terms: Public domain W3C validator