Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj934 Unicode version

Theorem bnj934 28967
Description: Technical lemma for bnj69 29040. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj934.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj934.4  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj934.7  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj934.50  |-  G  e. 
_V
Assertion
Ref Expression
bnj934  |-  ( (
ph  /\  ( G `  (/) )  =  ( f `  (/) ) )  ->  ph" )
Distinct variable groups:    A, f, n    R, f, n    f, X, n
Allowed substitution hints:    ph( f, n, p)    A( p)    R( p)    G( f, n, p)    X( p)    ph'( f, n, p)    ph"( f, n, p)

Proof of Theorem bnj934
StepHypRef Expression
1 bnj934.1 . . . 4  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 eqtr 2300 . . . 4  |-  ( ( ( G `  (/) )  =  ( f `  (/) )  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)  ->  ( G `  (/) )  =  pred ( X ,  A ,  R ) )
31, 2sylan2b 461 . . 3  |-  ( ( ( G `  (/) )  =  ( f `  (/) )  /\  ph )  ->  ( G `  (/) )  =  pred ( X ,  A ,  R ) )
4 bnj934.7 . . . . 5  |-  ( ph"  <->  [. G  / 
f ]. ph' )
5 bnj934.4 . . . . . . . 8  |-  ( ph'  <->  [. p  /  n ]. ph )
6 vex 2791 . . . . . . . 8  |-  p  e. 
_V
71, 5, 6bnj523 28919 . . . . . . 7  |-  ( ph'  <->  (
f `  (/) )  = 
pred ( X ,  A ,  R )
)
87, 1bitr4i 243 . . . . . 6  |-  ( ph'  <->  ph )
9 bnj934.50 . . . . . 6  |-  G  e. 
_V
108, 9bnj524 28766 . . . . 5  |-  ( [. G  /  f ]. ph'  <->  [. G  / 
f ]. ph )
114, 10bitri 240 . . . 4  |-  ( ph"  <->  [. G  / 
f ]. ph )
121, 11, 9bnj609 28949 . . 3  |-  ( ph"  <->  ( G `  (/) )  =  pred ( X ,  A ,  R ) )
133, 12sylibr 203 . 2  |-  ( ( ( G `  (/) )  =  ( f `  (/) )  /\  ph )  ->  ph" )
1413ancoms 439 1  |-  ( (
ph  /\  ( G `  (/) )  =  ( f `  (/) ) )  ->  ph" )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   [.wsbc 2991   (/)c0 3455   ` cfv 5255    predc-bnj14 28713
This theorem is referenced by:  bnj929  28968
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-v 2790  df-sbc 2992  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263
  Copyright terms: Public domain W3C validator