Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj944 Structured version   Unicode version

Theorem bnj944 29310
Description: Technical lemma for bnj69 29380. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj944.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj944.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj944.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj944.4  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj944.7  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj944.10  |-  D  =  ( om  \  { (/)
} )
bnj944.12  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj944.13  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj944.14  |-  ( ta  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
bnj944.15  |-  ( si  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
Assertion
Ref Expression
bnj944  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ph" )
Distinct variable groups:    A, f,
i, m, n    y, A, f, i, m    R, f, i, m, n    y, R    f, X, n
Allowed substitution hints:    ph( y, f, i, m, n, p)    ps( y, f, i, m, n, p)    ch( y,
f, i, m, n, p)    ta( y, f, i, m, n, p)    si( y,
f, i, m, n, p)    A( p)    C( y,
f, i, m, n, p)    D( y, f, i, m, n, p)    R( p)    G( y, f, i, m, n, p)    X( y, i, m, p)    ph'( y, f, i, m, n, p)    ph"( y, f, i, m, n, p)

Proof of Theorem bnj944
StepHypRef Expression
1 simpl 445 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( R  FrSe  A  /\  X  e.  A
) )
2 bnj944.3 . . . . . . . 8  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
3 bnj667 29121 . . . . . . . 8  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  ->  (
f  Fn  n  /\  ph 
/\  ps ) )
42, 3sylbi 189 . . . . . . 7  |-  ( ch 
->  ( f  Fn  n  /\  ph  /\  ps )
)
5 bnj944.14 . . . . . . 7  |-  ( ta  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
64, 5sylibr 205 . . . . . 6  |-  ( ch 
->  ta )
763ad2ant1 979 . . . . 5  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  ta )
87adantl 454 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ta )
92bnj1232 29176 . . . . . . 7  |-  ( ch 
->  n  e.  D
)
10 vex 2960 . . . . . . . 8  |-  m  e. 
_V
1110bnj216 29100 . . . . . . 7  |-  ( n  =  suc  m  ->  m  e.  n )
12 id 21 . . . . . . 7  |-  ( p  =  suc  n  ->  p  =  suc  n )
139, 11, 123anim123i 1140 . . . . . 6  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  -> 
( n  e.  D  /\  m  e.  n  /\  p  =  suc  n ) )
14 bnj944.15 . . . . . . 7  |-  ( si  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
15 3ancomb 946 . . . . . . 7  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )  <->  ( n  e.  D  /\  m  e.  n  /\  p  =  suc  n ) )
1614, 15bitri 242 . . . . . 6  |-  ( si  <->  ( n  e.  D  /\  m  e.  n  /\  p  =  suc  n ) )
1713, 16sylibr 205 . . . . 5  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  si )
1817adantl 454 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  si )
19 bnj253 29069 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  ta  /\ 
si ) )
201, 8, 18, 19syl3anbrc 1139 . . 3  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )
)
21 bnj944.12 . . . 4  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
22 bnj944.10 . . . . 5  |-  D  =  ( om  \  { (/)
} )
23 bnj944.1 . . . . 5  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
24 bnj944.2 . . . . 5  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
2522, 5, 14, 23, 24bnj938 29309 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  U_ y  e.  (
f `  m )  pred ( y ,  A ,  R )  e.  _V )
2621, 25syl5eqel 2521 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  ta  /\  si )  ->  C  e.  _V )
2720, 26syl 16 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  C  e.  _V )
28 bnj658 29120 . . . . . 6  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  ->  (
n  e.  D  /\  f  Fn  n  /\  ph ) )
292, 28sylbi 189 . . . . 5  |-  ( ch 
->  ( n  e.  D  /\  f  Fn  n  /\  ph ) )
30293ad2ant1 979 . . . 4  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  -> 
( n  e.  D  /\  f  Fn  n  /\  ph ) )
31 simp3 960 . . . 4  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  ->  p  =  suc  n )
32 bnj291 29076 . . . 4  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  <->  ( ( n  e.  D  /\  f  Fn  n  /\  ph )  /\  p  =  suc  n ) )
3330, 31, 32sylanbrc 647 . . 3  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  -> 
( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph ) )
3433adantl 454 . 2  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  -> 
( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph ) )
35 bnj944.7 . . . . 5  |-  ( ph"  <->  [. G  / 
f ]. ph' )
36 bnj944.13 . . . . . . 7  |-  G  =  ( f  u.  { <. n ,  C >. } )
37 opeq2 3986 . . . . . . . . 9  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  <. n ,  C >.  =  <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. )
3837sneqd 3828 . . . . . . . 8  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  { <. n ,  C >. }  =  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )
3938uneq2d 3502 . . . . . . 7  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  (
f  u.  { <. n ,  C >. } )  =  ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } ) )
4036, 39syl5eq 2481 . . . . . 6  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  G  =  ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } ) )
41 dfsbcq 3164 . . . . . 6  |-  ( G  =  ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  ->  ( [. G  /  f ]. ph'  <->  [. ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph' ) )
4240, 41syl 16 . . . . 5  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  ( [. G  /  f ]. ph'  <->  [. ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph' ) )
4335, 42syl5bb 250 . . . 4  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  ( ph"  <->  [. ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph' ) )
4443imbi2d 309 . . 3  |-  ( C  =  if ( C  e.  _V ,  C ,  (/) )  ->  (
( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph" )  <->  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  [. ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph' ) ) )
45 bnj944.4 . . . 4  |-  ( ph'  <->  [. p  /  n ]. ph )
46 biid 229 . . . 4  |-  ( [. ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph'  <->  [. ( f  u. 
{ <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )  /  f ]. ph' )
47 eqid 2437 . . . 4  |-  ( f  u.  { <. n ,  if ( C  e. 
_V ,  C ,  (/) ) >. } )  =  ( f  u.  { <. n ,  if ( C  e.  _V ,  C ,  (/) ) >. } )
48 0ex 4340 . . . . 5  |-  (/)  e.  _V
4948elimel 3792 . . . 4  |-  if ( C  e.  _V ,  C ,  (/) )  e. 
_V
5023, 45, 46, 22, 47, 49bnj929 29308 . . 3  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  [. ( f  u.  { <. n ,  if ( C  e. 
_V ,  C ,  (/) ) >. } )  / 
f ]. ph' )
5144, 50dedth 3781 . 2  |-  ( C  e.  _V  ->  (
( n  e.  D  /\  p  =  suc  n  /\  f  Fn  n  /\  ph )  ->  ph" ) )
5227, 34, 51sylc 59 1  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  ph" )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2706   _Vcvv 2957   [.wsbc 3162    \ cdif 3318    u. cun 3319   (/)c0 3629   ifcif 3740   {csn 3815   <.cop 3818   U_ciun 4094   suc csuc 4584   omcom 4846    Fn wfn 5450   ` cfv 5455    /\ w-bnj17 29051    predc-bnj14 29053    FrSe w-bnj15 29057
This theorem is referenced by:  bnj910  29320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pr 4404  ax-un 4702  ax-reg 7561
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-bnj17 29052  df-bnj14 29054  df-bnj13 29056  df-bnj15 29058
  Copyright terms: Public domain W3C validator