Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj945 Unicode version

Theorem bnj945 28550
Description: Technical lemma for bnj69 28785. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj945.1  |-  G  =  ( f  u.  { <. n ,  C >. } )
Assertion
Ref Expression
bnj945  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  A  e.  n )  ->  ( G `  A
)  =  ( f `
 A ) )

Proof of Theorem bnj945
StepHypRef Expression
1 fndm 5422 . . . . . . 7  |-  ( f  Fn  n  ->  dom  f  =  n )
21ad2antll 709 . . . . . 6  |-  ( ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) )  ->  dom  f  =  n )
32eleq2d 2425 . . . . 5  |-  ( ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) )  ->  ( A  e.  dom  f  <->  A  e.  n ) )
43pm5.32i 618 . . . 4  |-  ( ( ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) )  /\  A  e.  dom  f )  <->  ( ( C  e.  _V  /\  (
p  =  suc  n  /\  f  Fn  n
) )  /\  A  e.  n ) )
5 bnj945.1 . . . . . . . . 9  |-  G  =  ( f  u.  { <. n ,  C >. } )
65bnj941 28549 . . . . . . . 8  |-  ( C  e.  _V  ->  (
( p  =  suc  n  /\  f  Fn  n
)  ->  G  Fn  p ) )
76imp 418 . . . . . . 7  |-  ( ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) )  ->  G  Fn  p )
87bnj930 28546 . . . . . 6  |-  ( ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) )  ->  Fun  G )
95bnj931 28547 . . . . . 6  |-  f  C_  G
108, 9jctir 524 . . . . 5  |-  ( ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) )  ->  ( Fun  G  /\  f  C_  G ) )
1110anim1i 551 . . . 4  |-  ( ( ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) )  /\  A  e.  dom  f )  -> 
( ( Fun  G  /\  f  C_  G )  /\  A  e.  dom  f ) )
124, 11sylbir 204 . . 3  |-  ( ( ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) )  /\  A  e.  n )  ->  (
( Fun  G  /\  f  C_  G )  /\  A  e.  dom  f ) )
13 df-bnj17 28457 . . . 4  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  A  e.  n )  <->  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n )  /\  A  e.  n
) )
14 3ancomb 943 . . . . . 6  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n )  <-> 
( C  e.  _V  /\  p  =  suc  n  /\  f  Fn  n
) )
15 3anass 938 . . . . . 6  |-  ( ( C  e.  _V  /\  p  =  suc  n  /\  f  Fn  n )  <->  ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) ) )
1614, 15bitri 240 . . . . 5  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n )  <-> 
( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) ) )
1716anbi1i 676 . . . 4  |-  ( ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n )  /\  A  e.  n
)  <->  ( ( C  e.  _V  /\  (
p  =  suc  n  /\  f  Fn  n
) )  /\  A  e.  n ) )
1813, 17bitri 240 . . 3  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  A  e.  n )  <->  ( ( C  e.  _V  /\  ( p  =  suc  n  /\  f  Fn  n
) )  /\  A  e.  n ) )
19 df-3an 936 . . 3  |-  ( ( Fun  G  /\  f  C_  G  /\  A  e. 
dom  f )  <->  ( ( Fun  G  /\  f  C_  G )  /\  A  e.  dom  f ) )
2012, 18, 193imtr4i 257 . 2  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  A  e.  n )  ->  ( Fun  G  /\  f  C_  G  /\  A  e.  dom  f ) )
21 funssfv 5623 . 2  |-  ( ( Fun  G  /\  f  C_  G  /\  A  e. 
dom  f )  -> 
( G `  A
)  =  ( f `
 A ) )
2220, 21syl 15 1  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  A  e.  n )  ->  ( G `  A
)  =  ( f `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   _Vcvv 2864    u. cun 3226    C_ wss 3228   {csn 3716   <.cop 3719   suc csuc 4473   dom cdm 4768   Fun wfun 5328    Fn wfn 5329   ` cfv 5334    /\ w-bnj17 28456
This theorem is referenced by:  bnj966  28721  bnj967  28722  bnj1006  28736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293  ax-reg 7393
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-id 4388  df-suc 4477  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-res 4780  df-iota 5298  df-fun 5336  df-fn 5337  df-fv 5342  df-bnj17 28457
  Copyright terms: Public domain W3C validator