Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj95 Structured version   Unicode version

Theorem bnj95 29136
Description: Technical lemma for bnj124 29143. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj95.1  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj95  |-  F  e. 
_V

Proof of Theorem bnj95
StepHypRef Expression
1 bnj95.1 . 2  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
2 snex 4397 . 2  |-  { <. (/)
,  pred ( x ,  A ,  R )
>. }  e.  _V
31, 2eqeltri 2505 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   _Vcvv 2948   (/)c0 3620   {csn 3806   <.cop 3809    predc-bnj14 28953
This theorem is referenced by:  bnj124  29143  bnj125  29144  bnj126  29145  bnj150  29148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-v 2950  df-dif 3315  df-un 3317  df-nul 3621  df-sn 3812  df-pr 3813
  Copyright terms: Public domain W3C validator