Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj95 Unicode version

Theorem bnj95 28573
Description: Technical lemma for bnj124 28580. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj95.1  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj95  |-  F  e. 
_V

Proof of Theorem bnj95
StepHypRef Expression
1 bnj95.1 . 2  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
2 snex 4346 . 2  |-  { <. (/)
,  pred ( x ,  A ,  R )
>. }  e.  _V
31, 2eqeltri 2457 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   _Vcvv 2899   (/)c0 3571   {csn 3757   <.cop 3760    predc-bnj14 28390
This theorem is referenced by:  bnj124  28580  bnj125  28581  bnj126  28582  bnj150  28585
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-v 2901  df-dif 3266  df-un 3268  df-nul 3572  df-sn 3763  df-pr 3764
  Copyright terms: Public domain W3C validator