Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj965 Structured version   Unicode version

Theorem bnj965 29375
 Description: Technical lemma for bnj852 29354. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj965.1
bnj965.2
bnj965.12000
bnj965.13000
Assertion
Ref Expression
bnj965
Distinct variable groups:   ,   ,   ,   ,   ,,   ,
Allowed substitution hints:   (,,,,)   (,,,)   (,,,,)   (,,,)   (,,,)   (,,,)   (,,,,)

Proof of Theorem bnj965
StepHypRef Expression
1 bnj965.1 . 2
2 bnj965.2 . 2
3 bnj965.13000 . . 3
43bnj918 29197 . 2
5 bnj965.12000 . 2
61, 2, 4, 5, 3bnj1000 29374 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wceq 1653   wcel 1726  wral 2707  wsbc 3163   cun 3320  csn 3816  cop 3819  ciun 4095   csuc 4585  com 4847  cfv 5456   c-bnj14 29114 This theorem is referenced by:  bnj964  29376  bnj999  29390 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-iota 5420  df-fv 5464
 Copyright terms: Public domain W3C validator