Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj981 Unicode version

Theorem bnj981 29298
Description: Technical lemma for bnj69 29356. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj981.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj981.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj981.3  |-  D  =  ( om  \  { (/)
} )
bnj981.4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj981.5  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
Assertion
Ref Expression
bnj981  |-  ( Z  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i ) ) )
Distinct variable groups:    A, f,
i, n, y    D, i, y    R, f, i, n, y    f, X, i, n, y    f, Z, i, n, y    ph, i,
y
Allowed substitution hints:    ph( f, n)    ps( y, f, i, n)    ch( y, f, i, n)    B( y, f, i, n)    D( f, n)

Proof of Theorem bnj981
StepHypRef Expression
1 elisset 2811 . . . 4  |-  ( Z  e.  trCl ( X ,  A ,  R )  ->  E. y  y  =  Z )
2 bnj981.1 . . . . . 6  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
3 bnj981.2 . . . . . 6  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
4 bnj981.3 . . . . . 6  |-  D  =  ( om  \  { (/)
} )
5 bnj981.4 . . . . . 6  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
6 bnj981.5 . . . . . 6  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
72, 3, 4, 5, 6bnj917 29282 . . . . 5  |-  ( y  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  y  e.  ( f `  i ) ) )
8 eleq1 2356 . . . . . 6  |-  ( y  =  Z  ->  (
y  e.  trCl ( X ,  A ,  R )  <->  Z  e.  trCl ( X ,  A ,  R ) ) )
9 eleq1 2356 . . . . . . . 8  |-  ( y  =  Z  ->  (
y  e.  ( f `
 i )  <->  Z  e.  ( f `  i
) ) )
1093anbi3d 1258 . . . . . . 7  |-  ( y  =  Z  ->  (
( ch  /\  i  e.  n  /\  y  e.  ( f `  i
) )  <->  ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i ) ) ) )
11103exbidv 1619 . . . . . 6  |-  ( y  =  Z  ->  ( E. f E. n E. i ( ch  /\  i  e.  n  /\  y  e.  ( f `  i ) )  <->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i
) ) ) )
128, 11imbi12d 311 . . . . 5  |-  ( y  =  Z  ->  (
( y  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  y  e.  ( f `  i
) ) )  <->  ( Z  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i ) ) ) ) )
137, 12mpbii 202 . . . 4  |-  ( y  =  Z  ->  ( Z  e.  trCl ( X ,  A ,  R
)  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i
) ) ) )
141, 13bnj593 29090 . . 3  |-  ( Z  e.  trCl ( X ,  A ,  R )  ->  E. y ( Z  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i ) ) ) )
15 nfv 1609 . . . . 5  |-  F/ y  Z  e.  trCl ( X ,  A ,  R )
16 nfcv 2432 . . . . . . . . . . . . . 14  |-  F/_ y om
17 nfv 1609 . . . . . . . . . . . . . . 15  |-  F/ y  suc  i  e.  n
18 nfiu1 3949 . . . . . . . . . . . . . . . 16  |-  F/_ y U_ y  e.  (
f `  i )  pred ( y ,  A ,  R )
1918nfeq2 2443 . . . . . . . . . . . . . . 15  |-  F/ y ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R )
2017, 19nfim 1781 . . . . . . . . . . . . . 14  |-  F/ y ( suc  i  e.  n  ->  ( f `  suc  i )  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) )
2116, 20nfral 2609 . . . . . . . . . . . . 13  |-  F/ y A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
223, 21nfxfr 1560 . . . . . . . . . . . 12  |-  F/ y ps
2322nfri 1754 . . . . . . . . . . 11  |-  ( ps 
->  A. y ps )
2423, 6bnj1096 29130 . . . . . . . . . 10  |-  ( ch 
->  A. y ch )
2524nfi 1541 . . . . . . . . 9  |-  F/ y ch
26 nfv 1609 . . . . . . . . 9  |-  F/ y  i  e.  n
27 nfv 1609 . . . . . . . . 9  |-  F/ y  Z  e.  ( f `
 i )
2825, 26, 27nf3an 1786 . . . . . . . 8  |-  F/ y ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i
) )
2928nfex 1779 . . . . . . 7  |-  F/ y E. i ( ch 
/\  i  e.  n  /\  Z  e.  (
f `  i )
)
3029nfex 1779 . . . . . 6  |-  F/ y E. n E. i
( ch  /\  i  e.  n  /\  Z  e.  ( f `  i
) )
3130nfex 1779 . . . . 5  |-  F/ y E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i ) )
3215, 31nfim 1781 . . . 4  |-  F/ y ( Z  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i
) ) )
3332nfri 1754 . . 3  |-  ( ( Z  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i
) ) )  ->  A. y ( Z  e. 
trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i ) ) ) )
3414, 33bnj1397 29183 . 2  |-  ( Z  e.  trCl ( X ,  A ,  R )  ->  ( Z  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i
) ) ) )
3534pm2.43i 43 1  |-  ( Z  e.  trCl ( X ,  A ,  R )  ->  E. f E. n E. i ( ch  /\  i  e.  n  /\  Z  e.  ( f `  i ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557    \ cdif 3162   (/)c0 3468   {csn 3653   U_ciun 3921   suc csuc 4410   omcom 4672    Fn wfn 5266   ` cfv 5271    /\ w-bnj17 29027    predc-bnj14 29029    trClc-bnj18 29035
This theorem is referenced by:  bnj1128  29336
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-v 2803  df-iun 3923  df-fn 5274  df-bnj17 29028  df-bnj18 29036
  Copyright terms: Public domain W3C validator