Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj982 Unicode version

Theorem bnj982 29126
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj982.1  |-  ( ph  ->  A. x ph )
bnj982.2  |-  ( ps 
->  A. x ps )
bnj982.3  |-  ( ch 
->  A. x ch )
bnj982.4  |-  ( th 
->  A. x th )
Assertion
Ref Expression
bnj982  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  ->  A. x
( ph  /\  ps  /\  ch  /\  th ) )

Proof of Theorem bnj982
StepHypRef Expression
1 df-bnj17 29028 . 2  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  <->  ( ( ph  /\  ps  /\  ch )  /\  th ) )
2 bnj982.1 . . . 4  |-  ( ph  ->  A. x ph )
3 bnj982.2 . . . 4  |-  ( ps 
->  A. x ps )
4 bnj982.3 . . . 4  |-  ( ch 
->  A. x ch )
52, 3, 4hb3an 1771 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  A. x ( ph  /\ 
ps  /\  ch )
)
6 bnj982.4 . . 3  |-  ( th 
->  A. x th )
75, 6hban 1748 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  A. x ( (
ph  /\  ps  /\  ch )  /\  th ) )
81, 7hbxfrbi 1558 1  |-  ( (
ph  /\  ps  /\  ch  /\ 
th )  ->  A. x
( ph  /\  ps  /\  ch  /\  th ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1530    /\ w-bnj17 29027
This theorem is referenced by:  bnj1096  29130  bnj1311  29370  bnj1445  29390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-bnj17 29028
  Copyright terms: Public domain W3C validator