Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj984 Structured version   Unicode version

Theorem bnj984 29260
 Description: Technical lemma for bnj69 29316. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj984.3
bnj984.11
Assertion
Ref Expression
bnj984

Proof of Theorem bnj984
StepHypRef Expression
1 sbc8g 3160 . . 3
2 bnj984.11 . . . 4
32eleq2i 2499 . . 3
41, 3syl6rbbr 256 . 2
5 df-rex 2703 . . . 4
6 bnj984.3 . . . . 5
7 bnj252 29004 . . . . 5
86, 7bitri 241 . . . 4
95, 8bnj133 29029 . . 3
109sbcbiiOLD 3209 . 2
114, 10bitrd 245 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   w3a 936  wex 1550   wceq 1652   wcel 1725  cab 2421  wrex 2698  wsbc 3153   wfn 5441   w-bnj17 28987 This theorem is referenced by:  bnj985  29261 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-v 2950  df-sbc 3154  df-bnj17 28988
 Copyright terms: Public domain W3C validator