Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj984 Unicode version

Theorem bnj984 29300
 Description: Technical lemma for bnj69 29356. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj984.3
bnj984.11
Assertion
Ref Expression
bnj984

Proof of Theorem bnj984
StepHypRef Expression
1 df-sbc 3005 . . . 4
21a1i 10 . . 3
3 bnj984.11 . . . 4
43eleq2i 2360 . . 3
52, 4syl6rbbr 255 . 2
6 df-rex 2562 . . . 4
7 bnj984.3 . . . . 5
8 bnj252 29044 . . . . 5
97, 8bitri 240 . . . 4
106, 9bnj133 29069 . . 3
1110sbcbiiOLD 3060 . 2
125, 11bitrd 244 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   w3a 934  wex 1531   wceq 1632   wcel 1696  cab 2282  wrex 2557  wsbc 3004   wfn 5266   w-bnj17 29027 This theorem is referenced by:  bnj985  29301 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-rex 2562  df-sbc 3005  df-bnj17 29028
 Copyright terms: Public domain W3C validator