Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj986 Unicode version

Theorem bnj986 28664
Description: Technical lemma for bnj69 28718. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj986.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj986.10  |-  D  =  ( om  \  { (/)
} )
bnj986.15  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
Assertion
Ref Expression
bnj986  |-  ( ch 
->  E. m E. p ta )
Distinct variable group:    m, n, p
Allowed substitution hints:    ph( f, m, n, p)    ps( f, m, n, p)    ch( f, m, n, p)    ta( f, m, n, p)    D( f, m, n, p)

Proof of Theorem bnj986
StepHypRef Expression
1 bnj986.3 . . . . . 6  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
2 bnj986.10 . . . . . . 7  |-  D  =  ( om  \  { (/)
} )
32bnj158 28435 . . . . . 6  |-  ( n  e.  D  ->  E. m  e.  om  n  =  suc  m )
41, 3bnj769 28470 . . . . 5  |-  ( ch 
->  E. m  e.  om  n  =  suc  m )
54bnj1196 28505 . . . 4  |-  ( ch 
->  E. m ( m  e.  om  /\  n  =  suc  m ) )
6 vex 2903 . . . . . 6  |-  n  e. 
_V
76sucex 4732 . . . . 5  |-  suc  n  e.  _V
87isseti 2906 . . . 4  |-  E. p  p  =  suc  n
95, 8jctir 525 . . 3  |-  ( ch 
->  ( E. m ( m  e.  om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n ) )
10 exdistr 1918 . . . 4  |-  ( E. m E. p ( ( m  e.  om  /\  n  =  suc  m
)  /\  p  =  suc  n )  <->  E. m
( ( m  e. 
om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n ) )
11 19.41v 1913 . . . 4  |-  ( E. m ( ( m  e.  om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n )  <->  ( E. m ( m  e. 
om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n ) )
1210, 11bitr2i 242 . . 3  |-  ( ( E. m ( m  e.  om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n )  <->  E. m E. p ( ( m  e.  om  /\  n  =  suc  m )  /\  p  =  suc  n ) )
139, 12sylib 189 . 2  |-  ( ch 
->  E. m E. p
( ( m  e. 
om  /\  n  =  suc  m )  /\  p  =  suc  n ) )
14 bnj986.15 . . . 4  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
15 df-3an 938 . . . 4  |-  ( ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n )  <-> 
( ( m  e. 
om  /\  n  =  suc  m )  /\  p  =  suc  n ) )
1614, 15bitri 241 . . 3  |-  ( ta  <->  ( ( m  e.  om  /\  n  =  suc  m
)  /\  p  =  suc  n ) )
17162exbii 1590 . 2  |-  ( E. m E. p ta  <->  E. m E. p ( ( m  e.  om  /\  n  =  suc  m
)  /\  p  =  suc  n ) )
1813, 17sylibr 204 1  |-  ( ch 
->  E. m E. p ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717   E.wrex 2651    \ cdif 3261   (/)c0 3572   {csn 3758   suc csuc 4525   omcom 4786    Fn wfn 5390    /\ w-bnj17 28389
This theorem is referenced by:  bnj996  28665
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-tr 4245  df-eprel 4436  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-bnj17 28390
  Copyright terms: Public domain W3C validator