Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj986 Structured version   Unicode version

Theorem bnj986 29226
 Description: Technical lemma for bnj69 29280. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj986.3
bnj986.10
bnj986.15
Assertion
Ref Expression
bnj986
Distinct variable group:   ,,
Allowed substitution hints:   (,,,)   (,,,)   (,,,)   (,,,)   (,,,)

Proof of Theorem bnj986
StepHypRef Expression
1 bnj986.3 . . . . . 6
2 bnj986.10 . . . . . . 7
32bnj158 28997 . . . . . 6
41, 3bnj769 29032 . . . . 5
54bnj1196 29067 . . . 4
6 vex 2951 . . . . . 6
76sucex 4783 . . . . 5
87isseti 2954 . . . 4
95, 8jctir 525 . . 3
10 exdistr 1929 . . . 4
11 19.41v 1924 . . . 4
1210, 11bitr2i 242 . . 3
139, 12sylib 189 . 2
14 bnj986.15 . . . 4
15 df-3an 938 . . . 4
1614, 15bitri 241 . . 3
17162exbii 1593 . 2
1813, 17sylibr 204 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   w3a 936  wex 1550   wceq 1652   wcel 1725  wrex 2698   cdif 3309  c0 3620  csn 3806   csuc 4575  com 4837   wfn 5441   w-bnj17 28951 This theorem is referenced by:  bnj996  29227 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-bnj17 28952
 Copyright terms: Public domain W3C validator