Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj986 Unicode version

Theorem bnj986 29302
Description: Technical lemma for bnj69 29356. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj986.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj986.10  |-  D  =  ( om  \  { (/)
} )
bnj986.15  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
Assertion
Ref Expression
bnj986  |-  ( ch 
->  E. m E. p ta )
Distinct variable group:    m, n, p
Allowed substitution hints:    ph( f, m, n, p)    ps( f, m, n, p)    ch( f, m, n, p)    ta( f, m, n, p)    D( f, m, n, p)

Proof of Theorem bnj986
StepHypRef Expression
1 bnj986.3 . . . . . 6  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
2 bnj986.10 . . . . . . 7  |-  D  =  ( om  \  { (/)
} )
32bnj158 29073 . . . . . 6  |-  ( n  e.  D  ->  E. m  e.  om  n  =  suc  m )
41, 3bnj769 29108 . . . . 5  |-  ( ch 
->  E. m  e.  om  n  =  suc  m )
54bnj1196 29143 . . . 4  |-  ( ch 
->  E. m ( m  e.  om  /\  n  =  suc  m ) )
6 vex 2804 . . . . . 6  |-  n  e. 
_V
76sucex 4618 . . . . 5  |-  suc  n  e.  _V
87isseti 2807 . . . 4  |-  E. p  p  =  suc  n
95, 8jctir 524 . . 3  |-  ( ch 
->  ( E. m ( m  e.  om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n ) )
10 exdistr 1859 . . . 4  |-  ( E. m E. p ( ( m  e.  om  /\  n  =  suc  m
)  /\  p  =  suc  n )  <->  E. m
( ( m  e. 
om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n ) )
11 19.41v 1854 . . . 4  |-  ( E. m ( ( m  e.  om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n )  <->  ( E. m ( m  e. 
om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n ) )
1210, 11bitr2i 241 . . 3  |-  ( ( E. m ( m  e.  om  /\  n  =  suc  m )  /\  E. p  p  =  suc  n )  <->  E. m E. p ( ( m  e.  om  /\  n  =  suc  m )  /\  p  =  suc  n ) )
139, 12sylib 188 . 2  |-  ( ch 
->  E. m E. p
( ( m  e. 
om  /\  n  =  suc  m )  /\  p  =  suc  n ) )
14 bnj986.15 . . . 4  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
15 df-3an 936 . . . 4  |-  ( ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n )  <-> 
( ( m  e. 
om  /\  n  =  suc  m )  /\  p  =  suc  n ) )
1614, 15bitri 240 . . 3  |-  ( ta  <->  ( ( m  e.  om  /\  n  =  suc  m
)  /\  p  =  suc  n ) )
17162exbii 1573 . 2  |-  ( E. m E. p ta  <->  E. m E. p ( ( m  e.  om  /\  n  =  suc  m
)  /\  p  =  suc  n ) )
1813, 17sylibr 203 1  |-  ( ch 
->  E. m E. p ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   E.wrex 2557    \ cdif 3162   (/)c0 3468   {csn 3653   suc csuc 4410   omcom 4672    Fn wfn 5266    /\ w-bnj17 29027
This theorem is referenced by:  bnj996  29303
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-bnj17 29028
  Copyright terms: Public domain W3C validator