MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnv Unicode version

Theorem bnnv 21445
Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
bnnv  |-  ( U  e.  CBan  ->  U  e.  NrmCVec )

Proof of Theorem bnnv
StepHypRef Expression
1 eqid 2283 . . 3  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2 eqid 2283 . . 3  |-  ( IndMet `  U )  =  (
IndMet `  U )
31, 2iscbn 21443 . 2  |-  ( U  e.  CBan  <->  ( U  e.  NrmCVec 
/\  ( IndMet `  U
)  e.  ( CMet `  ( BaseSet `  U )
) ) )
43simplbi 446 1  |-  ( U  e.  CBan  ->  U  e.  NrmCVec )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   ` cfv 5255   CMetcms 18680   NrmCVeccnv 21140   BaseSetcba 21142   IndMetcims 21147   CBanccbn 21441
This theorem is referenced by:  bnrel  21446  bnsscmcl  21447  ubthlem1  21449  ubthlem2  21450  ubthlem3  21451  minvecolem1  21453  hlnv  21470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-cbn 21442
  Copyright terms: Public domain W3C validator