Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnrel Structured version   Unicode version

Theorem bnrel 22361
 Description: The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
bnrel

Proof of Theorem bnrel
StepHypRef Expression
1 bnnv 22360 . . 3
21ssriv 3344 . 2
3 nvrel 22073 . 2
4 relss 4955 . 2
52, 3, 4mp2 9 1
 Colors of variables: wff set class Syntax hints:   wss 3312   wrel 4875  cnv 22055  ccbn 22356 This theorem is referenced by:  hlrel  22384 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-iota 5410  df-fv 5454  df-oprab 6077  df-nv 22063  df-cbn 22357
 Copyright terms: Public domain W3C validator