MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  boxriin Structured version   Unicode version

Theorem boxriin 7096
Description: A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
boxriin  |-  ( A. x  e.  I  A  C_  B  ->  X_ x  e.  I  A  =  (
X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
) ) )
Distinct variable groups:    y, A    y, B    x, I, y
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem boxriin
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simprl 733 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  z  Fn  I
)
2 ssel 3334 . . . . . . . 8  |-  ( A 
C_  B  ->  (
( z `  x
)  e.  A  -> 
( z `  x
)  e.  B ) )
32ral2imi 2774 . . . . . . 7  |-  ( A. x  e.  I  A  C_  B  ->  ( A. x  e.  I  (
z `  x )  e.  A  ->  A. x  e.  I  ( z `  x )  e.  B
) )
43adantr 452 . . . . . 6  |-  ( ( A. x  e.  I  A  C_  B  /\  z  Fn  I )  ->  ( A. x  e.  I 
( z `  x
)  e.  A  ->  A. x  e.  I 
( z `  x
)  e.  B ) )
54impr 603 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  A. x  e.  I 
( z `  x
)  e.  B )
6 eleq2 2496 . . . . . . . . . . . 12  |-  ( A  =  if ( x  =  y ,  A ,  B )  ->  (
( z `  x
)  e.  A  <->  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
7 eleq2 2496 . . . . . . . . . . . 12  |-  ( B  =  if ( x  =  y ,  A ,  B )  ->  (
( z `  x
)  e.  B  <->  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
8 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( A  C_  B  /\  ( z `  x
)  e.  A )  /\  x  =  y )  ->  ( z `  x )  e.  A
)
9 ssel2 3335 . . . . . . . . . . . . 13  |-  ( ( A  C_  B  /\  ( z `  x
)  e.  A )  ->  ( z `  x )  e.  B
)
109adantr 452 . . . . . . . . . . . 12  |-  ( ( ( A  C_  B  /\  ( z `  x
)  e.  A )  /\  -.  x  =  y )  ->  (
z `  x )  e.  B )
116, 7, 8, 10ifbothda 3761 . . . . . . . . . . 11  |-  ( ( A  C_  B  /\  ( z `  x
)  e.  A )  ->  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )
1211ex 424 . . . . . . . . . 10  |-  ( A 
C_  B  ->  (
( z `  x
)  e.  A  -> 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
1312ral2imi 2774 . . . . . . . . 9  |-  ( A. x  e.  I  A  C_  B  ->  ( A. x  e.  I  (
z `  x )  e.  A  ->  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
1413adantr 452 . . . . . . . 8  |-  ( ( A. x  e.  I  A  C_  B  /\  z  Fn  I )  ->  ( A. x  e.  I 
( z `  x
)  e.  A  ->  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
1514impr 603 . . . . . . 7  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) )
161, 15jca 519 . . . . . 6  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
1716ralrimivw 2782 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  A. y  e.  I 
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
181, 5, 17jca31 521 . . . 4  |-  ( ( A. x  e.  I  A  C_  B  /\  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A ) )  ->  ( ( z  Fn  I  /\  A. x  e.  I  (
z `  x )  e.  B )  /\  A. y  e.  I  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )
19 simprll 739 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )  -> 
z  Fn  I )
20 simpr 448 . . . . . . . 8  |-  ( ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )  ->  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) )
2120ralimi 2773 . . . . . . 7  |-  ( A. y  e.  I  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )  ->  A. y  e.  I  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) )
22 ralcom 2860 . . . . . . . 8  |-  ( A. y  e.  I  A. x  e.  I  (
z `  x )  e.  if ( x  =  y ,  A ,  B )  <->  A. x  e.  I  A. y  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )
23 iftrue 3737 . . . . . . . . . . . 12  |-  ( x  =  y  ->  if ( x  =  y ,  A ,  B )  =  A )
2423equcoms 1693 . . . . . . . . . . 11  |-  ( y  =  x  ->  if ( x  =  y ,  A ,  B )  =  A )
2524eleq2d 2502 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( z `  x
)  e.  if ( x  =  y ,  A ,  B )  <-> 
( z `  x
)  e.  A ) )
2625rspcva 3042 . . . . . . . . 9  |-  ( ( x  e.  I  /\  A. y  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )  -> 
( z `  x
)  e.  A )
2726ralimiaa 2772 . . . . . . . 8  |-  ( A. x  e.  I  A. y  e.  I  (
z `  x )  e.  if ( x  =  y ,  A ,  B )  ->  A. x  e.  I  ( z `  x )  e.  A
)
2822, 27sylbi 188 . . . . . . 7  |-  ( A. y  e.  I  A. x  e.  I  (
z `  x )  e.  if ( x  =  y ,  A ,  B )  ->  A. x  e.  I  ( z `  x )  e.  A
)
2921, 28syl 16 . . . . . 6  |-  ( A. y  e.  I  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) )  ->  A. x  e.  I 
( z `  x
)  e.  A )
3029ad2antll 710 . . . . 5  |-  ( ( A. x  e.  I  A  C_  B  /\  (
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )  ->  A. x  e.  I 
( z `  x
)  e.  A )
3119, 30jca 519 . . . 4  |-  ( ( A. x  e.  I  A  C_  B  /\  (
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )  -> 
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  A ) )
3218, 31impbida 806 . . 3  |-  ( A. x  e.  I  A  C_  B  ->  ( (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  A )  <->  ( (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) ) )
33 vex 2951 . . . 4  |-  z  e. 
_V
3433elixp 7061 . . 3  |-  ( z  e.  X_ x  e.  I  A 
<->  ( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  A ) )
35 elin 3522 . . . 4  |-  ( z  e.  ( X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B ) )  <->  ( z  e.  X_ x  e.  I  B  /\  z  e.  |^|_ y  e.  I  X_ x  e.  I  if (
x  =  y ,  A ,  B ) ) )
3633elixp 7061 . . . . 5  |-  ( z  e.  X_ x  e.  I  B 
<->  ( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  B ) )
37 eliin 4090 . . . . . . 7  |-  ( z  e.  _V  ->  (
z  e.  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B )  <->  A. y  e.  I  z  e.  X_ x  e.  I  if ( x  =  y ,  A ,  B
) ) )
3833, 37ax-mp 8 . . . . . 6  |-  ( z  e.  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
)  <->  A. y  e.  I 
z  e.  X_ x  e.  I  if (
x  =  y ,  A ,  B ) )
3933elixp 7061 . . . . . . 7  |-  ( z  e.  X_ x  e.  I  if ( x  =  y ,  A ,  B
)  <->  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) )
4039ralbii 2721 . . . . . 6  |-  ( A. y  e.  I  z  e.  X_ x  e.  I  if ( x  =  y ,  A ,  B
)  <->  A. y  e.  I 
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
4138, 40bitri 241 . . . . 5  |-  ( z  e.  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
)  <->  A. y  e.  I 
( z  Fn  I  /\  A. x  e.  I 
( z `  x
)  e.  if ( x  =  y ,  A ,  B ) ) )
4236, 41anbi12i 679 . . . 4  |-  ( ( z  e.  X_ x  e.  I  B  /\  z  e.  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
) )  <->  ( (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  B )  /\  A. y  e.  I  ( z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )
4335, 42bitri 241 . . 3  |-  ( z  e.  ( X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B ) )  <->  ( ( z  Fn  I  /\  A. x  e.  I  (
z `  x )  e.  B )  /\  A. y  e.  I  (
z  Fn  I  /\  A. x  e.  I  ( z `  x )  e.  if ( x  =  y ,  A ,  B ) ) ) )
4432, 34, 433bitr4g 280 . 2  |-  ( A. x  e.  I  A  C_  B  ->  ( z  e.  X_ x  e.  I  A 
<->  z  e.  ( X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
) ) ) )
4544eqrdv 2433 1  |-  ( A. x  e.  I  A  C_  B  ->  X_ x  e.  I  A  =  (
X_ x  e.  I  B  i^i  |^|_ y  e.  I  X_ x  e.  I  if ( x  =  y ,  A ,  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    i^i cin 3311    C_ wss 3312   ifcif 3731   |^|_ciin 4086    Fn wfn 5441   ` cfv 5446   X_cixp 7055
This theorem is referenced by:  ptcld  17637  kelac1  27129
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iin 4088  df-br 4205  df-opab 4259  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454  df-ixp 7056
  Copyright terms: Public domain W3C validator