Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpoly2 Unicode version

Theorem bpoly2 24864
Description: The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly2  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )

Proof of Theorem bpoly2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 2nn0 9998 . . 3  |-  2  e.  NN0
2 bpolyval 24856 . . 3  |-  ( ( 2  e.  NN0  /\  X  e.  CC )  ->  ( 2 BernPoly  X )  =  ( ( X ^ 2 )  -  sum_ k  e.  ( 0 ... ( 2  -  1 ) ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) ) ) )
31, 2mpan 651 . 2  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( X ^ 2 )  -  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) ) ) )
4 2cn 9832 . . . . . . . 8  |-  2  e.  CC
5 ax-1cn 8811 . . . . . . . 8  |-  1  e.  CC
6 1p1e2 9856 . . . . . . . 8  |-  ( 1  +  1 )  =  2
74, 5, 5, 6subaddrii 9151 . . . . . . 7  |-  ( 2  -  1 )  =  1
85addid2i 9016 . . . . . . 7  |-  ( 0  +  1 )  =  1
97, 8eqtr4i 2319 . . . . . 6  |-  ( 2  -  1 )  =  ( 0  +  1 )
109oveq2i 5885 . . . . 5  |-  ( 0 ... ( 2  -  1 ) )  =  ( 0 ... (
0  +  1 ) )
1110sumeq1i 12187 . . . 4  |-  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )
12 0nn0 9996 . . . . . . . . 9  |-  0  e.  NN0
13 nn0uz 10278 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
1412, 13eleqtri 2368 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
1514a1i 10 . . . . . . 7  |-  ( X  e.  CC  ->  0  e.  ( ZZ>= `  0 )
)
16 0z 10051 . . . . . . . . . . 11  |-  0  e.  ZZ
17 fzpr 10856 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) } )
1816, 17ax-mp 8 . . . . . . . . . 10  |-  ( 0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) }
1918eleq2i 2360 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  <->  k  e.  { 0 ,  ( 0  +  1 ) } )
20 vex 2804 . . . . . . . . . 10  |-  k  e. 
_V
2120elpr 3671 . . . . . . . . 9  |-  ( k  e.  { 0 ,  ( 0  +  1 ) }  <->  ( k  =  0  \/  k  =  ( 0  +  1 ) ) )
2219, 21bitri 240 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  <->  ( k  =  0  \/  k  =  ( 0  +  1 ) ) )
23 oveq2 5882 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
2  _C  k )  =  ( 2  _C  0 ) )
24 bcn0 11339 . . . . . . . . . . . . . 14  |-  ( 2  e.  NN0  ->  ( 2  _C  0 )  =  1 )
251, 24ax-mp 8 . . . . . . . . . . . . 13  |-  ( 2  _C  0 )  =  1
2623, 25syl6eq 2344 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
2  _C  k )  =  1 )
27 oveq1 5881 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
k BernPoly  X )  =  ( 0 BernPoly  X ) )
28 oveq2 5882 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
2  -  k )  =  ( 2  -  0 ) )
2928oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  (
( 2  -  k
)  +  1 )  =  ( ( 2  -  0 )  +  1 ) )
304subid1i 9134 . . . . . . . . . . . . . . . 16  |-  ( 2  -  0 )  =  2
3130oveq1i 5884 . . . . . . . . . . . . . . 15  |-  ( ( 2  -  0 )  +  1 )  =  ( 2  +  1 )
32 df-3 9821 . . . . . . . . . . . . . . 15  |-  3  =  ( 2  +  1 )
3331, 32eqtr4i 2319 . . . . . . . . . . . . . 14  |-  ( ( 2  -  0 )  +  1 )  =  3
3429, 33syl6eq 2344 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
( 2  -  k
)  +  1 )  =  3 )
3527, 34oveq12d 5892 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
( k BernPoly  X )  /  ( ( 2  -  k )  +  1 ) )  =  ( ( 0 BernPoly  X
)  /  3 ) )
3626, 35oveq12d 5892 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  3
) ) )
37 bpoly0 24857 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  =  1 )
3837oveq1d 5889 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  3 )  =  ( 1  /  3
) )
3938oveq2d 5890 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  3
) )  =  ( 1  x.  ( 1  /  3 ) ) )
40 3cn 9834 . . . . . . . . . . . . . 14  |-  3  e.  CC
41 3ne0 9847 . . . . . . . . . . . . . 14  |-  3  =/=  0
4240, 41reccli 9506 . . . . . . . . . . . . 13  |-  ( 1  /  3 )  e.  CC
4342mulid2i 8856 . . . . . . . . . . . 12  |-  ( 1  x.  ( 1  / 
3 ) )  =  ( 1  /  3
)
4439, 43syl6eq 2344 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  3
) )  =  ( 1  /  3 ) )
4536, 44sylan9eqr 2350 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  k  =  0 )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( 1  /  3 ) )
4645, 42syl6eqel 2384 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  0 )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  e.  CC )
478eqeq2i 2306 . . . . . . . . . . . 12  |-  ( k  =  ( 0  +  1 )  <->  k  = 
1 )
48 oveq2 5882 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
2  _C  k )  =  ( 2  _C  1 ) )
49 bcn1 11341 . . . . . . . . . . . . . . 15  |-  ( 2  e.  NN0  ->  ( 2  _C  1 )  =  2 )
501, 49ax-mp 8 . . . . . . . . . . . . . 14  |-  ( 2  _C  1 )  =  2
5148, 50syl6eq 2344 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
2  _C  k )  =  2 )
52 oveq1 5881 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
k BernPoly  X )  =  ( 1 BernPoly  X ) )
53 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( k  =  1  ->  (
2  -  k )  =  ( 2  -  1 ) )
5453oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
( 2  -  k
)  +  1 )  =  ( ( 2  -  1 )  +  1 ) )
55 npcan 9076 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  1  e.  CC )  ->  ( ( 2  -  1 )  +  1 )  =  2 )
564, 5, 55mp2an 653 . . . . . . . . . . . . . . 15  |-  ( ( 2  -  1 )  +  1 )  =  2
5754, 56syl6eq 2344 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( 2  -  k
)  +  1 )  =  2 )
5852, 57oveq12d 5892 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
( k BernPoly  X )  /  ( ( 2  -  k )  +  1 ) )  =  ( ( 1 BernPoly  X
)  /  2 ) )
5951, 58oveq12d 5892 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) )
6047, 59sylbi 187 . . . . . . . . . . 11  |-  ( k  =  ( 0  +  1 )  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) )
61 bpoly1 24858 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  =  ( X  -  ( 1  /  2 ) ) )
6261oveq1d 5889 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1 BernPoly  X )  /  2 )  =  ( ( X  -  ( 1  /  2
) )  /  2
) )
6362oveq2d 5890 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2  x.  ( ( 1 BernPoly  X )  /  2
) )  =  ( 2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) ) )
64 halfcl 9953 . . . . . . . . . . . . . . 15  |-  ( 1  e.  CC  ->  (
1  /  2 )  e.  CC )
655, 64ax-mp 8 . . . . . . . . . . . . . 14  |-  ( 1  /  2 )  e.  CC
66 subcl 9067 . . . . . . . . . . . . . 14  |-  ( ( X  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( X  -  ( 1  /  2
) )  e.  CC )
6765, 66mpan2 652 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  -  ( 1  /  2 ) )  e.  CC )
68 2ne0 9845 . . . . . . . . . . . . . 14  |-  2  =/=  0
69 divcan2 9448 . . . . . . . . . . . . . 14  |-  ( ( ( X  -  (
1  /  2 ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) )  =  ( X  -  ( 1  /  2
) ) )
704, 68, 69mp3an23 1269 . . . . . . . . . . . . 13  |-  ( ( X  -  ( 1  /  2 ) )  e.  CC  ->  (
2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) )  =  ( X  -  ( 1  /  2
) ) )
7167, 70syl 15 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) )  =  ( X  -  ( 1  /  2
) ) )
7263, 71eqtrd 2328 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
2  x.  ( ( 1 BernPoly  X )  /  2
) )  =  ( X  -  ( 1  /  2 ) ) )
7360, 72sylan9eqr 2350 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  k  =  ( 0  +  1 ) )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
2 ) ) )
7467adantr 451 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  k  =  ( 0  +  1 ) )  ->  ( X  -  ( 1  /  2
) )  e.  CC )
7573, 74eqeltrd 2370 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  ( 0  +  1 ) )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  e.  CC )
7646, 75jaodan 760 . . . . . . . 8  |-  ( ( X  e.  CC  /\  ( k  =  0  \/  k  =  ( 0  +  1 ) ) )  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  e.  CC )
7722, 76sylan2b 461 . . . . . . 7  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 0  +  1 ) ) )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  e.  CC )
7815, 77, 60fsump1 12235 . . . . . 6  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 0 ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  +  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) ) )
7944, 42syl6eqel 2384 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  3
) )  e.  CC )
8036fsum1 12230 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( 0 BernPoly  X )  /  3 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  3
) ) )
8116, 79, 80sylancr 644 . . . . . . . 8  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  3
) ) )
8281, 44eqtrd 2328 . . . . . . 7  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( 1  /  3 ) )
8382, 72oveq12d 5892 . . . . . 6  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 0 ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  +  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) )  =  ( ( 1  / 
3 )  +  ( X  -  ( 1  /  2 ) ) ) )
8478, 83eqtrd 2328 . . . . 5  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( ( 1  /  3 )  +  ( X  -  ( 1  /  2
) ) ) )
85 addsub12 9080 . . . . . . 7  |-  ( ( ( 1  /  3
)  e.  CC  /\  X  e.  CC  /\  (
1  /  2 )  e.  CC )  -> 
( ( 1  / 
3 )  +  ( X  -  ( 1  /  2 ) ) )  =  ( X  +  ( ( 1  /  3 )  -  ( 1  /  2
) ) ) )
8642, 65, 85mp3an13 1268 . . . . . 6  |-  ( X  e.  CC  ->  (
( 1  /  3
)  +  ( X  -  ( 1  / 
2 ) ) )  =  ( X  +  ( ( 1  / 
3 )  -  (
1  /  2 ) ) ) )
8765, 42negsubdi2i 9148 . . . . . . . 8  |-  -u (
( 1  /  2
)  -  ( 1  /  3 ) )  =  ( ( 1  /  3 )  -  ( 1  /  2
) )
88 halfthird 24115 . . . . . . . . 9  |-  ( ( 1  /  2 )  -  ( 1  / 
3 ) )  =  ( 1  /  6
)
8988negeqi 9061 . . . . . . . 8  |-  -u (
( 1  /  2
)  -  ( 1  /  3 ) )  =  -u ( 1  / 
6 )
9087, 89eqtr3i 2318 . . . . . . 7  |-  ( ( 1  /  3 )  -  ( 1  / 
2 ) )  = 
-u ( 1  / 
6 )
9190oveq2i 5885 . . . . . 6  |-  ( X  +  ( ( 1  /  3 )  -  ( 1  /  2
) ) )  =  ( X  +  -u ( 1  /  6
) )
9286, 91syl6eq 2344 . . . . 5  |-  ( X  e.  CC  ->  (
( 1  /  3
)  +  ( X  -  ( 1  / 
2 ) ) )  =  ( X  +  -u ( 1  /  6
) ) )
93 6re 9838 . . . . . . . 8  |-  6  e.  RR
9493recni 8865 . . . . . . 7  |-  6  e.  CC
95 6pos 9850 . . . . . . . 8  |-  0  <  6
9693, 95gt0ne0ii 9325 . . . . . . 7  |-  6  =/=  0
9794, 96reccli 9506 . . . . . 6  |-  ( 1  /  6 )  e.  CC
98 negsub 9111 . . . . . 6  |-  ( ( X  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( X  +  -u ( 1  /  6
) )  =  ( X  -  ( 1  /  6 ) ) )
9997, 98mpan2 652 . . . . 5  |-  ( X  e.  CC  ->  ( X  +  -u ( 1  /  6 ) )  =  ( X  -  ( 1  /  6
) ) )
10084, 92, 993eqtrd 2332 . . . 4  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
6 ) ) )
10111, 100syl5eq 2340 . . 3  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
6 ) ) )
102101oveq2d 5890 . 2  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) ) )  =  ( ( X ^ 2 )  -  ( X  -  ( 1  / 
6 ) ) ) )
103 sqcl 11182 . . 3  |-  ( X  e.  CC  ->  ( X ^ 2 )  e.  CC )
104 subsub 9093 . . . 4  |-  ( ( ( X ^ 2 )  e.  CC  /\  X  e.  CC  /\  (
1  /  6 )  e.  CC )  -> 
( ( X ^
2 )  -  ( X  -  ( 1  /  6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )
10597, 104mp3an3 1266 . . 3  |-  ( ( ( X ^ 2 )  e.  CC  /\  X  e.  CC )  ->  ( ( X ^
2 )  -  ( X  -  ( 1  /  6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )
106103, 105mpancom 650 . 2  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  ( X  -  ( 1  / 
6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) )
1073, 102, 1063eqtrd 2332 1  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   {cpr 3654   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054    / cdiv 9439   2c2 9811   3c3 9812   6c6 9815   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798   ^cexp 11120    _C cbc 11331   sum_csu 12174   BernPoly cbp 24853
This theorem is referenced by:  bpoly3  24865  bpoly4  24866
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-pred 24239  df-bpoly 24854
  Copyright terms: Public domain W3C validator